CS M146 Midterm

Jonathan Quach

TOTAL POINTS

78 / 100

QUESTION 1

Short Questions 40 pts

1.1 True/False 18 / 21

- 0 pts all correct
- 3 pts a incorrect

√ - 3 pts b incorrect

- 3 pts c incorrect
- 3 pts d incorrect
- 3 pts e incorrect
- 3 pts q incorrect
- 3 pts h incorrect

1.2 Model Evaluation 9 / 9

√ - 0 pts Correct

- 3 pts One incorrect answer
- 6 pts Two incorrect answers
- 1 pts One incorrect explanation
- 2 pts Two incorrect explanations
- 0 pts Click here to replace this description.

1.3 Decision Boundaries 5 / 10

- 0 pts Correct
- √ 5 pts one incorrect answer
 - 10 pts Two incorrect answers
 - 1 pts No mark which region is positive/negative
 - 2 pts 1 minor mistake

QUESTION 2

Perceptron 20 pts

2.1 algorithm 12 / 12

- 12 pts 4 wrong answers
- 9 pts 3 wrong answers
- 6 pts 2 wrong answers
- 3 pts 1 wrong answer
- √ 0 pts Correct

2.2 seperability 4 / 4

√ - 0 pts Correct (answer no)

- 2 pts Answer true and show the data is linearly seperable
 - 4 pts incorrect answer

2.3 data augmentation 4/4

- √ 0 pts Correct: either describe how to extend w
 and x; or provide a correct 3-d weight vector.
- **2 pts** minor error: either forget to describe how to extend either w or x; or provide an incorrect 3-d weight vector with some explanation
- **4 pts** Incorrect answer: provide 2-d weight vector; or provide an incorrect 3-d weight vector with no explanation
 - In your gragh, you have to exchange the position of "b" and "1".

QUESTION 3

Decision Tree 18 pts

3.1 H(Passed) 4 / 4

- √ 0 pts Correct
 - 2 pts minor mistake
 - 4 pts incorrect
 - 1 pts forget negative sign in the entropy
- **0 pts** Correct formulations, but Incorrect calculation

3.2 G(passed, GPA) 0 / 4

- 0 pts Correct
- 2 pts minor mistake

√ - 4 pts incorrect answer

- 1 pts tiny mistake
- **0 pts** Correct formulations, but Incorrect calculation

3.3 G(passed, study) o / 4

- 0 pts Correct

- 2 pts minor mistake
- √ 4 pts incorrect
 - 1 pts tiny mistake
 - 0 pts Correct formulation, but Incorrect calculation

3.4 Tree 4/6

- 0 pts Correct
- 6 pts incorrect
- 2 pts split when labels are pure
- √ 2 pts Split on attribute with lower information

gain

- 4 pts Only one split

QUESTION 4

Linear Regression 20 pts

- 4.1 application 6 / 6
 - √ 0 pts Correct
 - 1 pts minor mistake
 - 2 pts description is unclear
 - 6 pts incorrect
- 4.2 optimization algorithm 6/6
 - √ 0 pts Correct (GD,SGD, or analytic solution)
 - 2 pts missing or incorrect gradient
 - 6 pts incorrect
 - 4 pts no attempt at gradient
- 4.3 global optimality 4/8
 - 0 pts Correct
 - √ 4 pts Incomplete answer, with arguements and

derivation attempt

- 1 pts Almost correct (with a missing step)
- 6 pts Argues PSD or squared function
- 8 pts Incorrect
- Hessian is incorrect

QUESTION 5

- 5 Name & ID 2/2
 - √ 0 pts Correct
 - 2 pts No name and ID

CM146: Introduction to Machine Learning

Winter 2018

Midterm

Feb. 13th, 2018

- This is a closed book exam. Everything you need in order to solve the problems is supplied in the body of this exam.
- This exam booklet contains four problems.
- You have 90 minutes to earn a total of 100 points.
- Besides having the correct answer, being concise and clear is very important. For full credit, you must show your work and explain your answers.

Good Luck!

Name and ID: (2 Point) Jonathan Quach 604 595 720

Name	/2
Short Questions	/40
Perceptron	/20
Decision Tree	/18
Regression	/20
Total	/100

Short Questions [40 points]

- 1. [21 points] True/False Questions (Add 1 sentence to justify your answer if the answer is "False".)
- (a) When the hypothesis space is richer, over-fitting is more likely.

True

🤸 (b) Nearest neighbors is more efficient at training time than logistic regression.

False) both are equally efficient dury training time.

(c) Perception algorithms can always stop after seeing γ^2/R^2 number of examples if the data is linearly separable, where γ is the size of the margin and R is the size of the largest instance.

(d) Instead of maximizing a likelihood function, we can minimizing the corre-

sponding negative log-likelihood function.

True

(e) If data is not linearly separable, decision tree can not reach training error zero.

False decision true is capable of modeling nonlinear data as it is a nonlinear classifier.

(g) If data is not linearly separable, logistic regression can not reach training error zero.

True

(h) To predict the probability of an event, one would prefer a linear regression model trained with squared error to a classifier trained with logistic regression.

False) logistic regression is better for predicting an event since linear regression about real values and logistic regression orderts some value in (0,1)

(Kai-We; and Saj taught me better)

- 2. [9 points] You are a reviewer for the International Conference on Machine Learning, and you read papers with the following claims. Would you accept or reject each paper? Provide a one sentence justification if your answer is "reject".
 - accept(reject) "My model is better than yours. Look at the training error rates!"

(Reject) a model can overfit training data and

• accept/reject "My model is better than yours. After tuning the parameters on the test set, my model achieves lower test error rates!"

(Reject), a model shall have trued with a

Validation data set in order to avoid werfitting test data set.

• accept reject "My model is better than yours. After tuning the parameters using 5-fold cross validation, my model achieves lower test error rates!"

Accept.)

3. [10 points] On the 2D dataset of Fig. 1, draw the decision boundaries learned by logistic regression and 1-NN (using two features x and y). Be sure to mark which regions are labeled positive or negative, and assume that ties are broken arbitrarily.

Figure 1: Example 2D dataset for question

Perceptron [20 points]

Recall that the Perceptron algorithm makes an updates when the model makes a mistake. Assume now our model makes prediction using the following formulation:

$$y = \begin{cases} 1 & \text{if } w^T x \ge 1, \\ -1 & \text{if } w^T x < 1. \end{cases}$$
 (1)

1. [12 points] Finish the following Perceptron algorithm by choosing from the following options.

- (a) $w^T x_i \geq 0$
- (c) $w^T x \ge 9$ and $y_i = 1$ (d) $w^T x \ge 9$ and $y_i = -1$ (g) $w^T x < 9$ and $y_i = 1$ (h) $w^T x < 9$ and $y_i = -1$
- (e) $w^T x_i < 0$
- $(f) y_i = -1$

- (i) x_i (j) x_i (k) $w + x_i$ (m) $y_i(w + x_i)$ (n) $-y_i(w + x_i)$ (o) $w^T x_i$

Given a training set $D = \{x_i, y_i\}_{i=1}^m$

Initialize $w \leftarrow 0$.

For $(x_i, y_i) \in D$:

negative should be positive

positie sheld be negative

Return w

 \uparrow 2. [4 points] Let w to be a two dimensional vector. Given the following dataset, can the function described in (1) separate the dataset?

Instance	1	2	3	4	5	6	7	8_
Label y	+1	-1	+1	+1	+1	-1	-1	+1
Data (\mathbf{x}_1, x_2)	(2, 0)	(2, 4)	(-1, 1)	(1, -1)	(-1, -1)	(4, 0)	(2, 2)	(0, 2)

(2) ZW, + FWZ (-1

adding (3) and (4) results in OZZ)
which is take

e

Instance	1	2	3	4	5	6	7	8
Label y	+1	-1	+1	+1	+1	-1	-1	+1
Data (\mathbf{x}_1, x_2)	(2, 0)	(2, 4)	(-1, 1)	(1, -1)	(-1, -1)	(4, 0)	(2, 2)	(0, 2)

3. [4 points] If your answer to the previous question is "no", please describe how to extend w and data points x into 3-dimensional vectors, such that the data can be separable. If your answer to the previous question is "yes", write down the w that can separate the data.

We need a bias term b such that

 $W = \begin{bmatrix} w_1 \\ w_2 \\ b \end{bmatrix}$

Decision Tree [18 points]

We will use the dataset below to learn a decision tree which predicts if people pass machine learning (Yes or No), based on their previous GPA (High, Medium, or Low) and whether or not they studied.

1		
GPA	Studied	Passed
уL	F	- F
L	\mathfrak{T}	- T
M	\mathbf{F}	F
\mathbf{M}	${ m T}$	$T_{?}$
H	Ŧ	T
H	T	T

For this problem, you can write your answers using log2, but it may be helpful to note that $\log_2 3 \approx 1.6$ and entropy $H(S) = -\sum_{v=1}^K P(S=v) \log_2 P(S=v)$. The information gain of an attribute A is $G(S,A) = H(S) - \sum_{v \in Value(A)} \frac{|S_v|}{|S|} H(S_v)$, where S_v is the subset of S for which A has value v.

1. [4 points] What is the entropy H(Passed)?

= = 1 | og 3 - 5 | og 2 3 - 6 | og 2

4. [6 points] Draw the full decision tree that would be learned for this dataset. You do not need to show any calculations.

Linear Regression [20 points]

1. [6 points] Describe one application of linear regression. Please define clearly what are your input, output, and features.

Linear regression could be used to calculate the cost of a horse with some fathers (I'll use I father for example)

Input: X, where X holds m training examples X, Xz,... Xm and each X, EX has say two features. X:1 and X:2 (say the first feature is # of bedrooms and second feature is the corner rate of the location the hase is in). Of carrey there could be n features, but thus is an application/example!

Output: Price of the hase In some range (e.g. [\$ 0,00,510,000,000]).

2. [6 points] Given a dataset $\{(x^{(i)}, y^{(i)})\}_{i=1}^{M}$ in a two dimensional space. The objective function of linear regression with square loss is

$$J(w_1, w_2) = \frac{1}{2} \sum_{i=1}^{M} (y_i - (w_1 x_1^{(i)} + w_2 x_2^{(i)}))^2,$$
 (2)

where w_1 and w_2 are feature weight to be learned. Write down one optimization procedure that can learn w_1 and w_2 from data. Please be as explicit as possible.

We could take the gradient of $J(w_1, w_2)$ and have W_1 and W_2 be added with the negative of said gradients bearing rate should also be multiplied by the gradient in order to have higher chance of convergence. This will resitt in a larer cost value etalvated in the next iteration, which is good (where X is learny rate) $W_1 = W_1 - XVI$ because the model will

because the model will have better accuracy at predicting values for new/

Unseen data instances.

y= .3x d dy 3 $(y-w^Tx)$ 3. [8 points] Prove that Eq. (2) has a global optimal solution. (Full points if the proof is mathematically correct. 4 points if you can describe the procedure for proving the claim.) $J(w_1,w_2) = \frac{1}{2} \sum_{i=1}^{N} (g_i - (w_i x_i^{(i)} + w_2 x_2^{(i)}))^2$ $\nabla J = \left(\sum_{i=1}^{N} \left(y_{i} - \left(w_{i} \times_{i}^{(i)} + w_{z} \times_{z}^{(i)}\right)\right) \cdot X_{i} \right) \left(y_{i} - \left(w_{i} \times_{i}^{(i)} + w_{z} \times_{z}^{(i)}\right)\right) \cdot X_{z}\right)$ get Hessian of $J(w_i, w_i)$ and show that it is positive semi definite which shows that $J(w_i, w_i)$ is convex, thus having global optimal solution. $H = \left[W_{1}X_{1} + \sum_{i=1}^{M} \left(y_{i} - \left(w_{1}X_{1}^{(i)} + w_{2}X_{2}^{(i)} \right) \right) \right]$ W2X2+ 5(9,-(0,x(1)+W2X2) (which mean no value is nonnegative)

Smee all elements are squared values we get that For any Z=[31], ZTHZZO, so the function

is comex and is grammeed to have a global minimum

as H is positive semi definite.