‘1 True or False [15 pts]

Choose either True or False for each of the following statements. (If your answer is incorrect, partial
point may be given if your explanation is reasonable.) :

(a) (3 p'ts)' After mapping feature into a high dimension space with a proper kernel, a Perceptron
.may be able to achieve better classification performance on instances it wasn’t able to classify
before. .
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(b) (3 pts) Given two classifiers A and B, if A has a lower VC-dimension than B, then éoncep—
tually A is more likely to overfit the data.
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(c) (3 pts) If two variables, X, Y are conditional independent given 7Z, then the variables X, Y
are independent as well. :
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(d) (3 pts) The SGD algorithm for soft-SVM optimization problem does not converge if the
training samples are not, linearly separable. ' :
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(e) (3 pts) In the AdaBoost algorithm, at each iteration, we increase the weight for misclassified
examples.
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2 Naive Bayes [14 pts]

Imagine you are given the following set of training examples. Each feature can take one of three
. nominal values: a, b, or ¢. :
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(a) (3 pts) What modeling assumptions does the Naive Bayes model make?
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(b) (3 pts) How many parameters do we need to learn fror the data in the model you defined
in (a).

(c) (3 pts) How many parameters do we have to estimate if we do not make the assumption as
in Naive Bayes? .
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(d) (3 pts) We use the maximum likelihood principle to estimate the model parameters in (a).
Show the numerical solutions of any three of the model parameters. .
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(e) (2 pts) In two sentences, describe the difference between logistic regression and the Naive
Bayes?
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3 'Expectatior.l Maximization [18 pts]

Suppose that somebody gave you a bag with two biased coins, having the probability of getting
heads of p; and p; respectively. You are supposed to figure out p; and ps by tossing the coins
repeatedly. You will repeat the following expenment n times: pick a coin uniformly at random
from the bag (i.e. each coin has probability 1 5 of being picked) and toss it, recording the outcome,
The coin is then returned to the bag. Assume that each experiment is independent.

(a) (4 pts) Suppose the two coins have different colors: the white coin has probability py to show
head, while the yellow coin has probability ps to show head. Based on color, you know which
coin you tossed during the experiments. After n tosses, the numbers of heads and tails of the
white coin are Hy and T}, respectively. And, the number of heads and tails of the yellow coin
are Hy and Tp. Write down the likelihood function.
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(b) (5 pts) Based on the above likelihood function. Derive the maximum likelihood estimators
for the two parameters p; and py (please provide the detailed derivations).
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(c) (4 pts) Now suppose both coins lock identical, hence the identity of the coin is missing in
your data. After n tosses, if the numbers of heads and tails we got are H and T, respectively.
Write down the likelihood function. Describing the challenge of maximizing this likelihood
function.

L(?an,Pwhﬂe | H>T)

= P( H)T ') P\\ P::,, PVI)’\H&‘)

H

n . .
(H ) (Pwh'..ia Pt (]'Fv«h&\(‘) ?2‘)H (Fw\\ilc (\“ P‘) + ( \—P‘”MW)U«P_A_\))T

waa #Uﬂot@';x ) (;.h@é(a;-q:uz‘(; Ao movdaiyl bocouee it s dil!,iir:x.cff-‘@ Ao Aependile Sth peragralor
P, Pz, ounol PWh-’w, widike A the  Aast /;,mz whore we weie able To ol A /:x-y Aeddirg, ,[ﬁg,@}jﬂw;u_

(d) (5 pts) Describe how to optimize the likelihood function in the previous question by the EM
. algorithm (please provide sufficient details).

e Jumetton, car be 151{39;4&1%;,;»/ tding an Horoting proccune ='
0 Muese Aome O<p, < | p<p, <l anel 0< paie < 1.
2) Compiity he Jiklihosds baged gn Hhe ebigivtisne.
33 Recomputs Py P, annd ;)1,.,;.;-,& ol mwugimf/ probabildios, (aum over foink Pa,o-bal;.iia;ﬁzd«). ,

f}") Q”«P"Jw 283 wild PoAa,w?&}w C(nwa/\/%@,'



4 Kernels and SVM [26 pts] |

(a) I this question we W111 define kernels, study some of their proper ties and develop one specific
kernel.

i. (2 pts) Circle the correct option below:
A function K (z, 2) is a valid kernel if it corresponds to the _inner (dot) preolust {@1_195@&
‘product™), “sum”} in some feature space, of the fea,ture,representa,txons that correspond
to z'and 2.

ii. (10 pts) In the next few questions we gulde you to prove the foﬂowmg properties of

kernels:
Linear Combmatv.on Property: if V i, ki{z, z') are valid kernels, and ¢; > 0 are constants,
then ky(z,z') = 3_,; ciki(z, 2")-is also a valid kernel. , : L 6

e (5 pts) Given a valid kernel k1 (z,2') and a constant ¢ > 0, use the definition above ¢
to show that k{z,z') = cki(z, ') is also a valid kernel.
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o (5 pts) Given valid kernels ki (z,z') and kg(z, z'), use the definition above to show
 that k(z,z) = ki(z,2") + ko(z,2') is also a valid kernel. ~
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(b) Let {(z:,v:)}_; be a set of | training pairs of feature vectors and labels. We consider binary
classification, and assume y; € {—1,+1}Vi. The following is the primal formulation of L2
SVM, a variant of the standard SVM obtained by squaring the hinge loss:
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i. (4 pts) Derive an unconstrained optimization problem that is equivalent to Eq. (1).
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ii. (6 pts) Show that removiﬂg the last set of constraints {¢ > 0,Vi} does not change the
optimal solution to the primal problem. :
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iii. (4 pts) Given the following dataset in 1-d space, which consists of 4 positive data points
{0,1,2,3} and 3 negative data points {—3,~2, -1}
o if O =0, pleaée list all the support vectors.
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5 -PAC learning and VC dimension [15 pts|

(a) (6 pts) Consider a learning problem in which z € R is a real number, and the hypothesis
space is a set of intervals H = {(a < z < b)|a,b € R}. Note that the hypothesis labels points
inside the interval as positive, and negative otherwise. What is the VC dimension of H?7
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| (b) (5 pts) The sample complexity of a PAC-learnable Hypothesis class H is given by
> A .
In three sentences, explain the rﬁeaning of € and § and tﬁe meaning of t;hé inequality.
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(c) (4 pts) Now suppose we have a training set with 25 examples and our model has an error of
0.32 on the test-set. Based on Eq. (2), how many training examples we may need to reduce
the error rate to 0.15 7 (Only need to list the formulation.)
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6 Short Answer Questions [30 pts]

Most of the following questions can be answered in one or two sentences. Please make your answer

concise and to the point,

(2) (2 pts) Multiple choice: for & neural network, which one of the following design ch01ces that
affects the trade-off between underfitting and overfitting the most:

i. The learning rate
The number of hidden nodes
iii. The initialization of model weights

(b) (4 pts) Describe the difference between mazimum likelihood (MLE) and maxirum a posteriori
(MAP) principles, and under what condition, MAP is reduced to MLE?
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(c) (6 pts) If a data point y follows the Poisson distribution with rate parameter 6, then the
probability of a single observation y is given by
6Y exp™?
y!
" You are given data points y1,%s, ..., Yn independently drawn from a Poisson distribution with
parameter 6. What is the MLE of §. (Hint: write down the log-likelihood as a function of §.)
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(d) (6 pts) Given vectors z and z in R?, define the kernel K3(z;2) = (8 + z - 2)? for any value
B> 0. Find the corresponding feature map ¢g(-).
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' (e) (2 pts) Your billionaire friend needs your help. She needs to classify job applications into
good/bad categories, and also to detect job applicants who lie in their applications using
density estimation to detect outliers. To meet these needs, do you recommend using a dis-
criminative or generative classifier? Why?
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(f) (5 pts) We consider Boolean functions in the class L10,30,100.. This is the class of 10 out of
30 out of 100, defined over {z;, zs, .. .Z100}. Recall that a function in the class Lyp 30,100 is
defined by a set of 30 relevant variables. An example z € {0, 1} is positive if and only if at
least 10 out these 30 variables are on: In the following discussion, for the sake of simplicity,
whenever we consider a member in L10,30,100, we will consider the function f in which the first
30 coordinates are the relevant coordinates. Show a linear threshold function A that behaves
just like f (S L10,30,100 on {O, 1}100.
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(8) (5 pts) Describe what are the model assumptions in the Gaussian Mixture Model (GMM).
Is GMM a discriminative model or a generative model? .
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