UCLA
CS143—Spring 2016



Problem A: 30 points—6 questions: 5 points per question.

T(A,C,B,D,E)

Q1. is any of the previous FDs trivial?
a) AD — CE

Ans: (c) Is trivial and we eliminate it.

(

(b) BC — D
(c) AB — A Q2: Transform the given FDs into an equivalent
set of elementary FDs (no trivial FD, only one
(d) B—F attribute on the right side, minimal left side).
(al) AD > C

(a2) AD—>E

(b) BC->D

(d) B>E



T(A,C,B,D,E) with (al)AD->C
(a2) AD 2> E
(b) BC—>D
(d) B>E

Q3:is T(A,C,B,D,E) BCNF?

Answer: o check whether it is BCNF, check the non-
trivial FDs, starting with (a1)

(a1): AD+={AD,C, E}. Since B is missing AD is not a
key, or a superset of a key: This is a BCNF violation.



T(A,C,B,D,E) with (al) AD > C

(a2) AD > E

(b) BC>D

(d) B>E
Q4:is T(A,C,B,D,E) 3NF?
Answer: We have seen that a1 and a2 violate BCNF, thus a1 (a2)
violate 3NF unless there exist an elementary X->A where Xis a
key for T and X contains A (E for a2). But E is not in the left side
of ant elementary FD.



T(A,C,B,D,E) with (al) AD > C

(a2) AD > E

(b) BC—> D

(d) B>E
Q5:is T(A,C,B,D,E)
Compute a lossless decompositions of T into BCNF relations
where no two relations share the same keys.
Using al, a2: T1(A,D, C, E), T2(A,B,D) These are BCNF
But we can try another decomposition.
e.g. (d): R1(B, E) R2(A, B, C, D) Now R2 is not BCNF, let us
decompose it into: R21(B,C,D), R22(A, B, C). R1, R21, R22 is
BCNF.



T(A,C,B,D,E) with (al) AD > C
(a2) AD > E
(b) BC—>D
(d) B>E

Q6: Can you reconstruct the original relation from those obtained in the
decomposition? What RA operation will you be using for that?
Yes, using natural joins.

Q7. Is your decomposition FD preserving? To receive credit you
must justify your answer.
With: T1(A,D, C, E), T2(A,B,D): welooseB > EandBC—->D

With: R1(B, E), R21(B,C,D), R22(A, B, C). We loose al and a2



Problem B: 20 points—4 questions 5 points per question.

You must propose a relational schema for the DB described by the ER diagram
below. You also know that there is complete information about our DB content,
whereby all values are known for the attributes associated with each entity
instance, and the diamond relationships are total since each employee works in
some department and has a supervisor. (Of course, the ISA relationship is an
exception, inasmuch as each employee is a person, but not every person is an
employee.) Please solve the following problems:

B1. For the DB just described, design a BCNF schema that must have (i) a
minimum relation count, (ii) a minimum count of attribute in each relation, and
(iii) it must be such that, owing to the completeness of our DB, all columns in all
relations can be declared with the “nulll not allowed” option. Show the keys of
the resulting relations by underscoring the key attributes and using different
underscoring styles for different keys in the same relation.

B2, B3, B4, B5



Problem B: 20 points—4 questions 5 points per question.

You must propose a relational schema for the DB described by the ER diagram
below. You also know that there is complete information about our DB content,
whereby all values are known for the attributes associated with each entity
instance, and the diamond relationships are total since each employee works in
some department and has a supervisor. (Of course, the ISA relationship is an
exception, inasmuch as each employee is a person, but not every person is an
employee.) Please solve the following problems:

B1. For the DB just described, design a BCNF schema that must have (i) a
minimum relation count, (ii) a minimum count of attribute in each relation, and
(iii) it must be such that, owing to the completeness of our DB, all columns in all
relations can be declared with the “nulll not allowed” option. Show the keys of
the resulting relations by underscoring the key attributes and using different
underscoring styles for different keys in the same relation.

B2, B3, B4, B5



ST
@ Persons
NP A

Employees _‘—y Departments

subor-
dinate

Reports_To



B1. For the DB just described, design a BCNF schema that must have (i) a
minimum relation count, (ii) a minimum count of attribute in each relation, and
(iii) it must be such that, owing to the completeness of our DB, all columns in all
relations can be declared with the “nulll not allowed” option. Show the keys of
the resulting relations by underscoring the key attributes and using different
underscoring styles for different keys in the same relation.

We recognize the wegk entity. Thus, we import Eno from Employees and get:
1. dependentchild(Eno, childname, age)

Then for Departments we get: 2. departents(did, dname, budget)

Then, from Persons we get: 3. persons(SSN, age, sex)

We can now turn to Employees where, with the help of an additional attribute
SuperEno we break the Reports to cycle and, by importing ssn through ISA we

obtain. 4. employees(Eno, name, did, superEno, SSN).

Thus we obtain a total of 4 relations, each containing a minimum number of
attributes.



B2. Complete your schema declarations by showing the foreign keys in each
relation (you can do that by either using the SQL declarations or simply drawing
a picture where foreign keys references are displayed as arrows across
relations).

Answer: We have the following foreign key references:
dependentchild.Eno - employees.Eno
employees.ssh = persons.ssh

employees.did - departents.did

employees.SuperEno - employees.Eno



B3. With the many-to-many relation the FD Eno - did disappears, and the pairs
(Eno, did) and (ssn, did) become the keys of our table 4. Now, we still have say
Eno - name, superkEno with Eno no longer a key. Thus our table employees is
no longer BCNF, and we see update anomalies. For instance, if an employee
works in N>1 departments, then his/her reassignment to a different supervisor
will require updating N records. This is an anomaly.

Answer: Since the many-to-many relation the FD Eno = did disappears, the
pairs (Eno, did) and (ssn, did) become the keys of our table 4. Now, we still
have say Eno - name, superEno and Eno no longer a key. Thus our table
employees is no longer BCNF, and we see update anomalies. For instance, if an
employee works in N>1 departments, then his/her reassignment to a different
supervisor will require updating N records. This is an anomaly.

B4. Solve problems B1 and under the revised assumption made in B3.
Answer: We will thus have to decompose table 4 into a pair of tables:

4.a employees(Eno, name, superEno, SSN).
a.b works in(Eno, did).




Problem C: 30 points— 6 questions, 5 points per question. Whenever appli-
cable show the appropriate graph and always justify your answers.

Consider the following schedule, where T1 has an earlier timestamp than T2:

T1 T2
start
write(A)
start
read(A)
read (C)
write(C)
write(C)

Please answer the following questions:

T>T2 onAandC
Q1. Is this schedule conflict-serializable ? T2>TlonC

NO. according to the graph.



Problem C, cont

NO: 2PL schedules are
serializable

Q2. Can this schedule be generated under a 2PL protocol?

Q3. Show what will happen to T1 and T2 if they try to execute this schedule under a
timestamp-based scheduling protocol (with Thomas write rule).

If t1 and t2 are respectively the timestamps of T1 and T2, then:

T1
start
write(A)

read (C)

write(C)

T2

start

read(A)

write(C)

wts(A):= t1

ok since t2>wts(A)

rts(C):=t1

ok since wts(C) >t1; wts(C):=t2
t1<wts(C) so do nothing—Thomas



Q4. Show what will happen to T1 and T2 if they try to execute this schedule under a
strict 2PL locking strategy and no deadlock prevention (assume that a transaction locks a
resource just before it needs it)?

T1 T2
start
write(A)
start
R-L(A) and wait-for T1
read (C)
write(C)
unlock A, C ; commit

read(A)
write(C)



Q5. What will happen to T1 and T2 if they instead execute using a strict 2PL strategy
and a wait-die deadlock prevention scheme (assume that a transaction locks a resource just
before it needs it)?

T1 T2

start

write(A)
start
R-L(A) and die

read (C)

write(C)

unlock A, C ; commit
restart
read(A)
write(C)

Q6. In the wait-die deadlock prevention protocol, transactions that are rolled back keep
their old timestamp. What is the reason for that?

In a conflict younger transactions die but older transaction wait and finally complete: thus
keeping the old timestamp reduces starvation.



Extra Credit [4 points]. To receive credit you must justify your
answers.

e Does the protocol used in C.Q3 guarantee freedom from deadlocks?

e Does the protocol used in C.Q4 guarantee cascadeless schedules?

C.Q3 uses a timestamp based serializability protocol. Such
protocol is always deadlock free.

C.Q.4: Under strict 2PL a transaction T1 holds its X-loxka locks

until commit, so there is no way that a transaction T2 can read
T1’s dirty data.



