UCLA Instructor: C. Zaniolo
Computer Science Department TA: Fusheng Wang
Fall 2003

Student Name and ID:

(CS143 Final EXAM: Closed Book, 3 Hours

Attach extra pages as needed. Write your name and ID on any extra
page that you attach. Please, write neatly.

Problem Score
1 (24%)

2 (25%)

3 (30%)

4 (21%)

Total (100%)

Extra Credit:

Final Score:



(CS143 Final Exam, Fall 2003 — Page: i

Problem 1. 24 Points

In a distributed DB, there are three sites, A, B,C, and there are communication lines
between A and B and between B and C, but no direct line between A and C. The three
sites co-operate in a distributed transaction using the Two-Phase Commit (2PC) protocol;
A is the coordinator.

If you agree with the following statements, just write ‘TRUE’. If you disagree, write 'FALSE’
and explain the reasons why the statement is false.

The communication lines: A — B — C

A. If the communication is lost between A and B, A waits indefinitely in a blocked state
till communication is restored.

FALSE: A is the coordinator. If the communication stops before it receives the ‘vote
to commit’ by all the sites, the coordinator waits for a while, but then it aborts and
instructs the participants to do the same. Once the coordinator receives commit from
all participants the coordinator just commit and sent them back the commit order.

B. Say that B receives the commit instruction from A but cannot forward such instruction
to C since the line between B and C is down. Then B must wait in a blocked state
till the line is restored and C can be sent the instruction to commit.

FALSE: B commits. In general, the sites act on the basis of the messages they receive,
not on the basis of the messages they can send (since they can never be sure on the
state of lines).

Now say that B receives the commit instruction from A, but immediately after that, both
lines between A and B and between B and C go down. Say that the line between B and C
is restored well before the line between B and A. Then:

C. B remains in a blocked state till the line with A is restored, and then asks A for
instructions.

FALSE: B commits. Same reason as in the previous case B.
D. C remains in a blocked state till its line with B is restored, and then it ask B for its
decision and replicates it.

TRUE. Since C never received the commit message, it will have to ask B what hap-
pened and follow suite.



(CS143 Final Exam, Fall 2003 — Page: ii

Problem 2, 25 points: Consider the following schedule (where TO is older than T1,
which is older than T2).

TO T1 T2
write(A)
read(B)
read(B)
write (B)
read(A)
write(A)

request a lock
on A and abort
read(C)
write(C)
read (D)

a) Draw the precedence graph and list all the equivalent serial schedules for the completed
transactions.

Precedence Graph: TO--A,C--> T1; T2 does not complete, it aborts.

The only equivalent serial schedule is TO followed by T1.

b) Which of the following policies could have generated this schedule?

(1) A 2PL protocol? (show a complete schedule with the lock-X, lock-S and unlock for each
resource)

Assume 2PL. At the point where T2 performs write(T2) T0 and T1 must have released
the locks they previously had on B. Thus, at this point, TO and T1 are in the shrinking
phase where no new lock can be obtained. Since, at this point, only one has has a lock on
C and no new lock can obtained later, they cannot both perform the operations shown in
the schedule. Thus, this is not a 2PL protocol.

(2) a strict 2PL protocol? (show a complete schedule with the lock-X, lock-S and unlock
for each resource)

NO: This is not 2PL, and is not strict. The schedule show that T1 locks A before T0 has
completed; but in a strict 2PL TO0 would have kept the lock till the end of the transaction.

(3) 2PL with wait-die deadlock prevention strategy?

NO: T0 and T1 do not follow 2PL. However, T2 follows the wait-die strategy: the younger
transaction T2 finds B locked by the older T1 and thus abort and restarts later with its old
timestamp.

(4) 2PL with a wound-wait deadlock prevention strategy?
NO: TO and T1 do not follow 2PL, and no with wound-wait the younger T2 would have
waited until A is unlocked by the older T1.

(5) Cascading of rollbacks to kill transactions that performed ‘dirty reads’
NO. A ’dirty read’ is on piece of data changed by a different transaction that has then
aborted. Here T2 aborts, but nobody reads the data written by T2.



(CS143 Final Exam, Fall 2003 — Page: iii

Problem 3, 30 points: We have a relation schema R(C, S, J, D, P,Q,V) with the fol-
lowing FDs:

C — CSJDPQV
JP —C
SD — P

J— S8

a) Find a canonical cover for these FDs (show the steps)

.JP—-C
.SD — P
.J =8
.C— 8
.C—=J
.C—D
.C—>P
.C—=Q
.C->V

© 00 O U i W N~

No extraneous attribute in the left side of the first two FDs. However, FDs 4. and 7. are
redundant.

b) Use the 3NF design algorithm to design a 3NF schema that has the lossless-join property
and a minimal relation count (show the steps)

Lossless join property: C'is a key for the original relation and the 3NF decomposition. No
additional relation needed to ensure the lossless join property.

Minimal relation count: all the relations with candidate key C' can be merged.
Also C < JP: thus the first relation can be joined with those having C' as Key. We obtain:

R14567(J7 P7 g7 D7 QJ V)? RZ(S7 D? P)? R3(J7 S)
c) Is the resulting schema BCNF (explain your answer)?

Yes. FD 3 is no longer contained in any relations. All the remaining FDs are in relations
where their left side is a superkey (an actual key for all the FDs at hand).



(CS143 Final Exam, Fall 2003 — Page: iv

Problem 4, 21 points:

Course(CName, Level, D#),
Dept (D#, Chair, School),

Class(CName, Section, Year, Quarter, Enrollment)

a) Draw the E-R diagram from which this 3NF schema could have been produced.

S_ection Year Quarter CName D#

Enrollment ir School

Class

b) Now assume that currently there are 20 schools, 100 departments, 4000 different courses,
and two sections for each course. Every school offers some courses.

Indicate what primary and secondary indices should be created to support the following
two queries efficiently:

Q1: Find the chair of the department offering a given course,

Index Course.Cname to find D# for the given course. Then to find the chair of the department
D# just found we can use an index Dept.D#. Each search finds one record, at most. There
is no benefit in clustering the file by the key of an index supporting exact-match searches
for a single record.

Q2: Finds all courses offered in a given school.

To support the search for the given School, we should have an index on Dept.School;
then, using D# so found we should have. index on Course.D# to expedite the join. On the
average, there are five departments per each school, and 40 courses per department. Thus,
both searches are greatly expedited by clustering these two indexes—i.e., we should make
both of them primary indexes.

c) Estimate the average number of tuples produced by Q2.

Say that D# is a key foreign key. Then the natural join of Course and School contains
4000 different tuples. Also there are 20 different schools in the join. Then Q2 returns
4000/20=200.

Otherwise, we can assume 5 departments per school and 40 courses per department. Then
Q2 returns 5 x 40 = 200 tuples.



(CS143 Final Exam, Fall 2003 — Page: v

Extra Credit Problem, 4 points: On the average, should you expect fewer rollbacks
with the wait-die protocol or the wound-wait protocol? (Justify your answer)

In the wait-die, when the younger transaction dies and is restarted immediately it is likely
to find the same resource still occupied. Then it will die again, and this situation could
occur several times. For wound-wait, the younger transaction (Y) can be killed by an older
transaction (O). When restarted, Y is likely to find the resource still occupied by the its
killer O: but now, Y is the younger of the two and waits, and it gets the resource as soon
as O is done.



