Computer Science 143 Spring 2018

Prof. Ryan Rosario

		9.12.1
Name	Brandon	Ниа
ranic	DIGNICON	11000

UID 804-595-738

MIDTERM EXAM

Wednesday, May 9, 2018 - 8am

Form 1

Section:	1	2	3	4	5	6	7	8	Total
Worth:	7	4	10	30	15	10	9	15	100
Earned:	6	3	4	17	111	7	9	8	165

EXAM TIPS AND GUIDELINES

8 sections, 110 minutes 100 points, 25% of final grade

- 1. Look through the entire exam before getting started. If you come a question you are unsure about, skip it and come back to it later; never spend too much time (unproductively) on a single question.
- 2. Simple and clear solutions are recommended. You may receive as few as 0 points if your response is overcomplicated (exceeds the maximum word limit) or if we cannot understand it.
- 3. If you make any assumptions when solving a problem, describe your assumptions, though this does not guarantee credit.
- 4. To receive partial credit, show all work.
- 5. You are permitted one 2-sided reference sheet of the US Letter (8.5in × 11in) standard that is readable without any visual aids.
- 6. The reference sheet shall be submitted with your exam.
- 7. For test security reasons, there will be no break.
- 8. Computers, cell phones and any other electronic devices of any kind must be turned off and stored off your desk. The only items permitted on your desk are one or more pencils/pens, one of more erasers, your reference sheet, and this booklet.
- 9. Aside from your reference sheet, no notes or study materials of any kind are permitted and are strictly prohibited.
- 10. If you need extra space, use the back of each page.
- 11. Students are not permitted to leave the room before turning in your exam unless you tell us first. You are not to discuss any part of this exam, either specific content or topics covered, while not in this room until the exam ends.
- 12. Remember that you are bound by the Academic Integrity Agreement and its terms.
- 13. You will need to show your photo ID when turning in your exam.

DO NOT OPEN UNTIL WE OFFICIALLY BEGIN THE TEST

1.	(7 po marg	points) Real or Fake News? <i>Directions:</i> Read each statement carefully and mark your answer in to the right. Mark T if the statement is always true, otherwise mark F. Each item is worth $\frac{1}{2}$	er in the point.
	(a)	A natural join is conceptually the same as an inner join.	T F
	(b)	Procedures use the CALL syntax whereas functions are called in a query.	T F
	(c)	MySQL enforces foreign keys natively.	T F
		In a relation R that has columns A , B and K , with superkey K , the attributes K and A form a superkey.	T F
	(e)	The main purpose of foreign keys is to improve join performance.	T F
	(f)	When designing a schema, we should always pick the largest data type we may need so we can be sure data will always fit.	T F
	(g)	A GPA, of the fixed format 3.771 is best represented as a DECIMAL(1, 3).	T F
	(h)	When computing an aggregate, we must always specify a GROUP BY.	T F
	(i)	When we do a natural join between two relations with no common attributes, we get the empty set.	T F
	(j)	Aggregation functions like MIN, MAX and SUM can be used on both rows and columns.	T F
	(k)	In general, if we ignore performance, we can use a right join in place of a left join if we just change the order of the tables (and any aliases).	T F
	(1)	Every table is required to have a primary key.	T F
7	(m)	For text, a VARCHAR(n) and a BINARY(n) are the same because each character is one byte.	T F
	$\int_{\infty} (n)$	RDBMS is a use-case of OLTP.	T F

2.	(4 points) Choices, Choices. Directions: Choose the best answer. Mark your at the right.	answer in the margin to
	(a) In relational algebra, the closest operator to a SQL SELECT is	A B C D E
	Α. σ	
	В. П	
	C. ρ	9
	D. ×	
	E. ⋈	
	(b) The main difference between TEXT and VARCHAR(n) is	(A) (B) (C) (D) (E)
	A. TEXT can be indexed, VARCHAR(n) cannot.	
	B. VARCHAR(n) can be used as a key, TEXT cannot.	
	C. VARCHAR(n) can be longer than text for large n	
	D. TEXT is stored in a variable length record, VARCHAR(n) is stored in a fixed length record.	
	E. Nothing; they are the same.	
	(c) The CONSTRAINTCHECK syntax is a no-op in MySQL. We can enforce constraints with all of the following except (choose the <i>best</i> answer)	A B O D E
	A. a database trigger	
	B. primary and foreign keys \vee	
	C. a view	
	D. modifiers like NOT NULL and UNIQUE	
	E. a generated column (in newer version of MySQL)	
	(d) When creating a table schema, it is most important to	(A) (B) (C) (D) (E)
	A. allow redundant data to speed up querying of aggregates	
	B. plan well, because schema changes break code	
	C. use fixed data types for performance	
	D. use caching	
	E. plan how to efficiently swap from/to disk to/from RAM	
		2

3. A Random Question. Suppose UCLA Engineering wants to send a survey to random students. We store student information in a table that looks like the following:

Further suppose that based on past surveys, we have a table that contains several pieces of data about each UCLA Engineering student and a flag specifying whether or not the student responded (i.e. to model what factors are associated with a student responding or not responding to the survey).

END;

(a) (4 points) Write a query that randomly selects 10% of students (uid and email) from bruin_engineers. Assume you have a function called RAND() that generates random numbers from 0 to 1, into a column.

Assumptions: # of students is very large. RANOL) produces a uniform distribution.

SELECT

uid

FROM

bruin-engineers

WHERE

RANDL) <= 0.1; - also assuming the result of RANDL) is

not cached and reused

(b) (6 points) We want to divide the rows of survey_response_result into three groups, we use 50% of the data for training (call it group 1), 30% for validation (group 2) and 20% for testing (group 3). Write a query that assigns each row to a particular one of these sets. Again, assume you have a function called RAND() like before.

```
Assumption: There is an INT attribute "group" in survey-response-result.

UPDATE survey-response-vesult

SET group = (ASE

WHEN (RAND() <= 0.5) THEN 1

WHEN (RAND() <= 0.3/0.5) THEN 2

ELSE 3
```

lequery elles

4. The Friendly Skies. Now you work as a safety analyst for Southwest Airlines, where a single aircraft can be used for up to a dozen flights in a day. We have a few tables to study. Note that these tables have some redundant attributes to make this problem simpler. Assume flight numbers uniquely identify a route (origin and destination)

```
CREATE TABLE equipment_flight (
    departure_time TIMESTAMP,
    tail
                    CHAR(6) NOT NULL,
    -- i.e. N1234A, N789SW
                    SMALLINT(4),
    flight
    PRIMARY KEY(departure_time, flight)
);
-- which individual aircraft services a particular flight on a particular date.
CREATE TABLE flights (
    flight SMALLINT (4) PRIMARY KEY,
    -- i.e. 0424, 1297
    origin CHAR(3) NOT NULL,
    destination CHAR(3) NOT NULL,
    -- i.e. DEN, SJC, LAX, BUR, LGA, MMH
    distance SMALLINT NOT NULL
    -- in nautical miles
);
-- flights and their routes
CREATE TABLE snacks (
    flight SMALLINT(4) PRIMARY KEY,
    snack ENUM('pretzel', 'peanut') NOT NULL
);
-- Snacks on a Plane. Only contains rows if snacks are served on the flight.
```

(a) (5 points) Write a query that returns all aircraft (identified by tail) that flew/fly more than 5 flights on a particular date. You can assume today (CURDATE()) is the particular date.

```
SELECT
tail,

COUNT(tail) AS tailcount

FROM flights

INNER JOIN equipment-flight ON

flights. flight = equipment-flight. flight

TWHERE

DATE(departure-time) = CURDATEC)

GROUP BY tail

HAVING

tailcount > 5;
```

(b) (10 points) We need to inspect an aircraft if it flies more than 2,000 nautical miles in 12 hours. For each aircraft (tail) and flight departure, write a query to compute the number of miles it flew 12 hours prior to each of its departures. Filter the results to only show the number of miles, per aircraft, for today's (CURDATE()) departures only (i.e. using this data, we can plan our inspections for the day, or determine if we missed one). Hint: If you use a subquery, you can assign a name to it, like S, then you can write your final query in terms of S to avoid repetition and lots of erasing.

SELECT

departure_time,

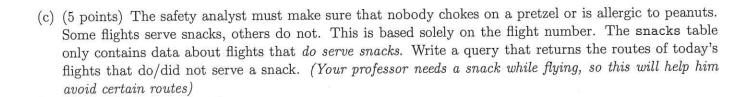
fat()

Plight

distance

FROM flights ok

INNER JOIN equipment_flight ON


flights. flight = equipment_flight.flight

WHERE

DATA (Departure_time) = CURDATE()

tail,
departure time, flight
SUM (distance)
FROM S
WHERE

TIMESTAMPDIFF (departure-time; CURRENT-TIMESTAMPL))
<(12 hrs)]

5

SELECT
flight

FROM flights

WHERE

flight NOT IN

(SELECT flight FROM snacks);

(d) (10 points) In lecture we covered the basic relational algebra operators. We also discussed that more complicated operations can be represented using these basic operators. Write a relational algebra expression that best represents the query in part (b). Hint: If you used a subquery and named it S in part (b), write an expression for S first, and then use it as relation S in the expression for the outer query.

4

5

Topasture time, tail, distance (DATE (Departure-time) = CURDATE()

- Arghts M flight : flight = equipment-flight Aight equipment

- 5. Can I Join You Two? *Directions:* Write a *succint* response to each question about joins. Only correct responses will receive credit. Correct responses should not be long. There is a word maximum for each response. Exceeding this maximum may result in 0 points.
 - (a) (5 points) Explain the difference between a CROSS JOIN and a FULL JOIN. Be specific: use examples or drawings to make your point if you must. (100 word maximum)

FULL JOIN joins on a key, while including non-matching rows by "NULL"ing the other table's attributes.

(b) (5 points) In class, we discussed extensively the use of JOIN in a SELECT. Give a situation when we might want to use a JOIN in a DELETE statement and also in an UPDATE statement, separately. (50 word maximum)

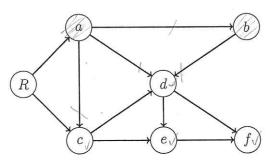
Let's say we have a table that represents a graph with attributes "vzl" and "vzz".

so one row represents an edge connecting a "vzl" to a "vzz". We can use JOIN to find cycles (of certain lengths) and DELETE

an edge (row) to remove them.

found during the joins.

UPDATE


Using the FOAF example from class, say we add a flag that represents the friend group/clique that a person is in lentirely based on mutual friendships). We can determine the flags value by using Self-joins and then update it properly based on mutual friendships

(c) (5 points) Suppose we have two very large tables A and B divided between two machines (table A is on machine 1 and table B and machine 2) and neither table fits in RAM. We wish to join both tables on a particular key. Describe how we can perform this join quickly as to minimize runtime, disk I/O, and network I/O. (150 word maximum)

We can use a bloom filter process.

Half of this page is intentionally blank.

6. Access Denied. We have the following authorization graph for some privilege p granted by root user R.

(a) (2 points) Suppose we revoke authorization from user a. The user(s) that lose their authorization under MySQL with the CASCADE option is/are (circle all that apply):

С

d

е

f

(b) (2 points) Suppose we revoke authorization from user a. The user(s) that lose their authorization under the SQL standard with CASCADE is/are (circle all that apply):

a

C

d

е

f

(c) (2 points) If we instead specify RESTRICT mode, what happens if we revoke p from a? Mark one answer.

- an error is displayed
- O nothing, the revoke is ignored
- \bigcirc only a loses the privilege p
- \bigcirc b, c and d also lose the privilege
- \bigcirc the hard disk suffers a head crash
- O vampires invade UCLA
- (d) (4 points) Yo Ho, Yo Ho a Spammer's Life for Me. It's time to put on the pirate hat. Complete the following SQL query so that instead of fetching only your student email address, it fetches email addresses for *all* students at UCLA. Assume the query is not a prepared statement.

SELECT

uid,

email

FROM student_emails

WHERE uid = " 1 OR TRUE

(assuming quotes are dropped, which Prof. did say to)

7. (9 points) Cubism for Computer Scientists. List the three most common schemas used in OLAP. Draw an example graph representing each schema. Denote a dimension table as D and a fact table as F.

star

constellation

snowflake

$$D-D$$
 F
 D
 D

8. If you Liked it Then You Should Have Put an Index on It.

Suppose we want to use various indexing methods to answer the following query across 1 billion records. Assume all keys in the index are unique.

SELECT *

FROM r

WHERE attribute = value;

(a) (2 points) Suppose we use a naive complete binary tree to index into blocks on the disk. In the worst case, how many disk block reads must we perform?

0(n) -> 1 6illion

(b) (2 points) Now suppose we instead use a B+-tree with n = 100. In the worst case, how many disk block reads must we perform?

2 log 50 (16-Uron)

(c) (5 points) Now suppose we have an ordered index where each key x comes from a particular (exponential) distribution, where $f(x|\lambda) = \lambda e^{-\lambda x}$ where λ is a constant and $x \in [0, \infty)$. We want to find out where we should begin a binary search over the keys in this ordered index to find a particular key value k. Write an expression in terms of k that finds the location in the index where we should begin the search.

(6 points) Base structure. List	d on what we have discussed, think about how a Bloom Filter differs from a hashing index one advantage of a Bloom Filter over a hashing index structure and list one disadvantage
of a Bloom Filt	er vs. an index. There is no need to exceed the given lines.
*	
Advantage:	more space efficient
	*
Disadvantage: _	false positives
	of a Bloom Filt

6

END OF EXAM

- 1. Make sure that you have written your name and UID on page 1.
- 2. Make sure you marked all of your answers for questions 1 and 2 in the right hand margin of pages 2 and 3. Marks should be distinct, with errors erased completely so we do not mistake them as intentional responses.
- 3. Make sure your responses are legible and that errors are cleanly erased or crossed out.
- 4. Your reference sheet *must* be handed in with your exam. Please put your UID and name on it.
- 5. Prepare to show a photo ID when handing in your exam.