
Midterm Exam

CS131: Programming Languages

Wednesday, May 3, 2017

1. 2.

3. 4.

5.

Name:

ID:

Rules of the game:

• Write your name and ID number above.

• The exam is closed-book and closed-notes.

• Please write your answers directly on the exam. Do not turn in anything else.

• The exam ends promptly at 3:50pm.

• Read questions carefully. Understand a question before you start writing.

• Relax!

1



1. (5 points each)

(a) Implement a function find of type (’a -> bool) -> ’a list -> ’a option, where
find p l returns the first element in the list l that satisfies the predicate p. The result
type is an option in order to have something to return in the case when no element in
the list satisfies the predicate. Recall the option type’s definition:
type ’a option = None | Some of ’a

For example, find (function x -> x > 2) [1;2;3;4] returns Some 3.
Implement this function recursively; do not write any helper functions or use
any functions from the List module.

let rec find p l =

match l with

[] -> None

| h::t -> if p h then Some h else (find p t)

(b) Now implement find again, but this time without using recursion. Instead, the
entire function body should be a single call to List.fold right. Recall the type
of List.fold right: (’a -> ’b -> ’b) -> ’a list -> ’b -> ’b.

let find p l =

List.fold_right (fun x curr -> if p x then Some x else curr) l None



2. (3 points each) Consider the find function from the previous problem, of type
(’a -> bool) -> ’a list -> ’a option.

(a) Choose the single best answer. If OCaml did not support parametric polymorphism:

i. find could not be passed another function as an argument.

ii. find could not be implemented using currying.

iii. find could not be passed lists of different lengths on different calls.

iv. none of the above

ANSWER: iv

(b) Choose the single best answer. Consider this OCaml expression:
find (function x -> x > 2) ["hi"; "there"]

i. The expression incurs an error at compile time.

ii. The expression incurs an error at run time.

iii. The expression is determined to have type string option at compile time.

iv. The expression is determined to have type string option at run time.

v. None of the above.

ANSWER: i

(c) Choose the single best answer. OCaml does not support static overloading of
functions. As a consequence:

i. find cannot be passed a list that contains both ints and floats

ii. find cannot be passed lists of different types on different calls

iii. it is an error to declare find if there already exists another function of that name

iv. none of the above

ANSWER: iv



3. We’ve seen two ways to define a two-argument function in OCaml: the arguments can either
be supplied as a tuple, or they can be supplied separately through currying. For example, a
function having two integer inputs that returns an integer could be implemented to have either
the type int * int -> int or the type int -> int -> int. In different circumstances, one
or the other form of function may be more convenient. It turns out that a function defined
in either form can be converted to the other.

(a) (4 points) Define a function curry of type ((’a * ’b) -> ’c) -> (’a -> ’b -> ’c)

that converts an uncurried function of two arguments into a curried function of two
arguments. For example, curry (function (x,y) -> x+y) returns a function f of
type int -> int -> int such that f e1 e2 returns the sum of e1 and e2, for any
integer arguments e1 and e2.

let curry f = (fun x y -> f(x,y))

(b) (4 points) Define a function uncurry of type
(’a -> ’b -> ’c) -> ((’a * ’b) -> ’c) that converts a curried function of two ar-
guments into an uncurried function of two arguments.

let uncurry f = (fun (x,y) -> f x y)

(c) (2 points) In OCaml (fun x y -> y+x+y) 2 3 returns the value 8. Suppose OCaml
used dynamic scoping instead of static scoping. Then if (fun x y -> y+x+y) 2 3 were
allowed to execute in a fresh invocation of the OCaml interpreter, it would:

i. still return the value 8

ii. incur an error when trying to look up the value of x

iii. incur an error when trying to look up the value of y

iv. incur an error when trying to perform an addition

v. none of the above

ii



4. (2 points each) For each property of OCaml below, say whether it is a consequence of OCaml
being statically typed (write “static”), strongly typed (write “strong”), both (write “both”),
or neither (write “neither”).

(a) OCaml treats functions as first-class values.

ANSWER: neither

(b) OCaml does not support static overloading.

ANSWER: neither

(c) OCaml never allows a primitive operation to be invoked with arguments of the wrong
types.

ANSWER: strong

(d) OCaml never allows a user-defined function to be invoked with arguments of the wrong
types.

ANSWER: both

(e) OCaml rejects some programs at compile time that would not incur any errors if allowed
to execute.

ANSWER: static



5. (4 points) Consider a variant of find from Problem #1 called rfind such that rfind p l

returns the last element of the list l that satisfies the predicate p. Can rfind be implemented
as a single call to List.fold right, with no other function calls (e.g., reversing the list is
not allowed)? If so, implement it; if not, write NO.

let rfind p l =

List.fold_right

(fun x curr ->

match curr with

None -> if p x then Some x else None

| _ -> curr)

l None


