
Midterm Exam

CS131: Programming Languages

Tuesday, May 8, 2012

Name:

ID:

Rules of the game:

• Write your name and ID number above.

• The exam is closed-book and closed-notes.

• Please write your answers directly on the exam. Do not turn in anything else.

• Obey our usual OCaml style rules.

• If you have any questions, please ask.

• The exam ends promptly at 5:50pm.

A bit of advice:

• Read questions carefully. Understand a question before you start writing. Note: Some

multiple-choice questions ask for a single answer, while others ask for all appropriate answers.

• The questions are not necessarily in order of difficulty, so skip around.

• Relax!

1

1. (5 points) Implement an OCaml function hasOddLength, of type ’a list -> bool. The
function should return true if the given list has an odd number of elements and return false

otherwise. Don’t define any helper functions or invoke any functions from the OCaml List
module.

let rec hasOddLength l =

match l with

[] -> false

| _::rest -> not (hasOddLength rest)

Alternatively:

let rec hasOddLength l =

match l with

[] -> false

| [_] -> true

| _::_::rest -> hasOddLength rest

2. (2 points each) Circle the single best answer.

(a) Parametric polymorphism in OCaml allows programmers to:

i. define multiple functions of the same name

ii. define one function with multiple names

iii. define one function that can be passed lists of different lengths on different invoca-
tions

iv. define one function that can be passed different types of arguments on different
invocations

iv

(b) OCaml does not support function overloading. As a consequence:

i. two modules cannot define functions of the same name

ii. a function cannot be passed different types of arguments on different invocations

iii. some function calls must be typechecked at run time

iv. i and ii above

v. none of the above

v

(c) Consider the OCaml identity function id of type ’a -> ’a, defined as let id x = x;;.
For the function call (id [1;2;3])

i. ’a is determined to be int at compile time

ii. ’a is determined to be int list at compile time

iii. ’a is determined to be int at run time

iv. ’a is determined to be int list at run time

v. ’a can be anything so it is never determined

ii

(d) Consider the OCaml expression "hi"::(id [1;2;3])

i. The expression fails to typecheck at compile time.

ii. The expression typechecks at compile time but raises an exception at run time.

iii. The expression typechecks at compile time and executes successfully.

i

3. (5 points each)

(a) Implement hasOddLength from Problem 1 again, but this time using a single call to
List.fold right instead of using explicit recursion.

let hasOddLength l = List.fold_right (fun _ res -> not res) l false

(b) A set of items of some type T can be represented by its characteristic function, which
is just a function of type T -> bool. For example, the set of positive integers can be
represented by the characteristic function (function x -> x > 0). Write a function
union, of type (’a -> bool) -> (’a -> bool) -> (’a -> bool), which takes two
sets represented as characteristic functions and returns a new characteristic function for
the set representing their union.

let union s1 s2 =

function x -> (s1 x) || (s2 x)

4. (a) (2 points each) For each property below, say whether it is a property of static typecheck-
ing only (write “static”), a property of dynamic typechecking only (write “dynamic”),
a property of both (write “both”), or a property of neither (write “neither”):

i. it detects bugs without running the program : static

ii. it only signals an error when the program really has a bug : dynamic

iii. it determines a type for each expression in the source program : static

iv. it ensures the program will never raise an exception at run time : neither

(b) (2 points) Circle the single best answer. C is considered weakly typed because:

i. it does not support parametric polymorphism

ii. it does not prevent array bounds violations

iii. it performs some typechecking at run time

iv. it requires each variable to have an explicitly declared type

ii

(c) (2 points) Circle the single best answer. OCaml is considered statically typed because:

i. each program expression is given a type at compile time

ii. it prevents array bounds violations

iii. the value of a variable never changes after initialization

iv. it does not require variables to have explicitly declared types

i

5. (2 points each)

Assume the following OCaml declarations have been entered in this order into the OCaml
interpreter:

let n = 3;;

let f x = x - n;;

let n = [3];;

Give the value of each expression below, or say “static error” if it would cause a static error
or “dynamic error” if it would cause a run-time error.

(a) f 7

4

(b) f n

static error

(c) f x

static error

6. (2 points) Circle all answers that apply. Which of these are properties of static scoping?

(a) Each variable usage can be bound to its associated declaration at compile time.

(b) Each variable’s value never changes after initialization.

(c) Each variable can be garbage collected as soon as a new variable of the same name
shadows it in the environment.

(d) A new variable declaration cannot change the behavior of functions defined before that
declaration.

a and d

7. (5 points each) (Continues on the next page) Here’s a simple signature for modules that
implement a button which can toggle between off and on:

module type BUTTON = sig

type t

val init : t

val toggle : t -> t

val isOn : t -> bool

end

The value init is a button initialized to the “off” position. The function toggle toggles
the button. The function isOn returns a boolean indicating whether or not the button is
currently on.

(a) Complete the following implementation of the BUTTON signature, in which the type t is
implemented with a user-defined type:

module Button : BUTTON = struct

type t = Off | On

(* provide implementations of init, toggle, and isOn *)

let init = Off

let toggle b =

match b with

Off -> On

| On -> Off

let isOn b = (b=On)

end

(b) Complete the following implementation of the BUTTON signature, in which the type t is
now just a synonym for bool:

module Button : BUTTON = struct

type t = bool

(* provide implementations of init, toggle, and isOn *)

let init = false

let toggle b = (not b)

let isOn b = b

end

8. (2 points) Circle all answers that apply. Hiding the definition of the type t in the BUTTON
signature above provides which of the following benefits for modules that implement that
signature?

(a) It allows the definition of t to be later changed without breaking clients of the module

(b) It ensures that a button’s state can only be changed by calling toggle.

(c) It allows clients to manipulate the button more efficiently

(d) It allows the isOn function to be later removed without breaking clients of the module

a and b

