
Midterm Exam

CS131: Programming Languages

Thursday, October 30, 2014

1. 2.

3. 4.

5.

Name:

ID:

Rules of the game:

• Write your name and ID number above.

• The exam is closed-book and closed-notes.

• Please write your answers directly on the exam. Do not turn in anything else.

• Obey our usual OCaml style rules.

• Except where explicitly disallowed, you can write any number of helper functions that you
need.

• The exam ends promptly at 1:50pm.

• Read questions carefully. Understand a question before you start writing.

• Relax!

1

1. (5 points each) Recall one of the implementations from Homework 2 for a dictionary mapping
keys of type ’a to values of type ’b: an association list of type (’a * ’b) list. In this
problem you will implement two versions of an OCaml function joindicts, of type
(’a * ’b) list -> (’b * ’c) list -> (’a * ’c) list

which joins two dictionaries to produce a new dictionary. A call joindicts d1 d2 should
return a dictionary containing all pairs (k,w) such that (k, v) is in d1 and (v, w) is in d2. For
example:

joindicts [(1,"hi"); (2,"bye")] [("bye", false); ("hello", true)];;

- : (int * bool) list = [(2, false)]

You may assume that each argument dictionary contains at most one binding for each key.
You may also assume the existence of the function get1 that you wrote in Homework 2, whose
type is ’a -> (’a * ’b) list -> ’b option, which looks up a key in an association list
and returns either None (when the key is not in the dictionary) or Some v (when the key is
mapped to v in the dictionary).

(a) Implement joindicts using explicit recursion. Don’t use any functions from the
List module.

let rec joindicts al1 al2 =

match al1 with

[] -> []

| (k,v)::rest ->

match (get1 v al2) with

None -> joindicts rest al2

| Some v’ -> (k,v’)::(join rest al2)

(b) Recall the fold right function from the List module, of type
(’a -> ’b -> ’b) -> ’a list -> ’b -> ’b

Implement joindicts again, but this time the entire body of the function should be a
single call to fold right. Don’t use any other functions from the List module.

let joindicts al1 al2 =

List.fold_right

(fun (k,v) joined ->

match (get1 v al2) with

None -> joined

| Some v’ -> (k,v’)::joined)

al1 []

2. (3 points each)

(a) Name one advantage of static typechecking over dynamic typechecking, and provide
OCaml code that illustrates the point.

It detects type errors early, at compile time instead of run time. For example, a function
containing something bad like 1+true will not typecheck, while in a dynamically typed
language the error will only be caught when the function is executed.

(b) Name one advantage of dynamic typechecking over static typechecking, and provide
OCaml code that illustrates the point.

Dynamic typechecking does not have to be conservative while static typechecking does.
For example, OCaml does not allow heterogenous lists like [1; true] since it can’t give
such a list a type, while a dynamically typed language allows this.

3. In class we saw how to define a datatype for binary trees in OCaml. This problem will explore
n-ary trees, where each internal node can have any number of children rather than exactly
two.

(a) (3 points) Define a type tree for n-ary trees. You should assume that leaf nodes do not
hold any data and that internal nodes each contain an integer as the data.

type tree = Leaf | Node of int * tree list

(b) (5 points) Define a function incTree of type int -> tree -> tree such that a call
incTree n t returns a tree identical to t but with each internal node’s data value
incremented by n. You may use functions from the List module if that is useful.

let rec incTree n t =

match t with

Leaf -> Leaf

| Node(d,children) -> Node(d+n, List.map (incTree n) children)

4. (3 points each)

(a) Which of these things are implied by the fact that OCaml is strongly typed?
Circle all answers that apply.

i. Each of a program’s expressions is given a type at compile time.

ii. A program cannot access memory that it did not allocate.

iii. A program can make use of parametric polymorphism.

iv. A program cannot terminate with an exception at run time.

ii

(b) Which of these things are implied by the fact that OCaml supports parametric polymor-
phism?
Circle all answers that apply.

i. A single function can be passed arguments of different types.

ii. A function call cannot be completely typechecked until run time.

iii. Two functions can have the same name.

iv. Functions can have other functions as arguments.

i

(c) Which of these things are implied by the fact that OCaml supports static scoping?
Circle all answers that apply.

i. A variable’s value can never change after initialization.

ii. Each variable usage can be bound to its associated declaration at compile time.

iii. Currying properly preserves the behavior of passing multiple arguments to a func-
tion.

iv. All memory can be allocated at compile time.

ii and iii

5. (5 points each) Here is one way to represent lazy lists of integers in OCaml, which produce
their elements on demand rather than all at once:

type lazylist = Nil | Cons of int * (unit -> lazylist)

This definition is almost the standard definition of lists as a datatype that we saw in class,
except that each Cons node contains a function that produces the next node in the list, rather
than directly containing the next node. We can correspondingly define functions to access
the head and tail of a (non-empty) lazy list:

let head (Cons(x,f)) = x

let tail (Cons(x,f)) = f()

Here when we ask for the tail we execute the function stored in the datatype, producing a
new lazylist.

Here’s an example of the lazy list representing [1;2]:

let l = Cons(1, (function () -> Cons(2, (function () -> Nil))));;

val l : lazylist = Cons (1, <fun>)

head l;;

- : int = 1

head (tail l);;

- : int = 2

tail (tail l));;

- : lazylist = Nil

(a) One benefit of lazy lists is that they can be used to define lists of infinite length. Define
a function intsFrom of type int -> lazylist such that (intsFrom n) produces the
infinite list of successive integers starting from n. For example, (intsFrom 1) returns
the infinite list of positive integers.

let rec intsFrom n = Cons(n, (function () -> intsFrom(n+1)))

(b) Write a function lazymap, of type (int -> int) -> lazylist -> lazylist, which
acts like the List.map function but for lazy lists. That is, lazymap f l produces a new
lazy list whose elements are the result of applying the function f to each element of the
lazy list l. For example, lazymap (function x -> x*2) (intsFrom 1) produces the
infinite list of positive even numbers.

let rec lazymap f l =

match l with

Nil -> Nil

| Cons(x,tFun) -> Cons(f x, (function () -> lazymap f (tFun ())))

