Name & UID : _____

Question	Points	Score
1	10	
2	30	
3	15	
4	20	
5	10	
Total:	85	

1.	10 points) Use Clark's algorithm to phase the following 4 genotypes. Show your work.
G 111111 00111 11000 -22000- G -11111- 00111	11111 11111 11000 1. Add haplotypes that must be present (22000 => 11000) 1000 2. Remove genotypes that are already explained by the set of haplotypes h already present 11000 3. Add one or more haplotypes 00111 to the output set, explaining
11000	the genotypes in order (the input data order)
-22000-	Choose arbitrarily if multiple options
G -11111- -00111- -11000 -22000	h 11000 00111 00000

4

2. You have a population with the following 3 genotypes:

10122 21222 00011

(a) (10 points) For each genotype, write out the possible pairs of haplotypes that could have generated it.

```
10122: (10111, 00011);
(10011, 00111)
21222: (11111, 10111)
00011: (00000, 00011),
(00010, 00001)
```

(b) (10 points) How would we set this problem up to solve using expectation-maximization? In particular, what is our input data, D, the parameters which we are trying to solve for, θ_t , and the latent variables Z.

Input Data (D): Genotypes

Parameters we want (Theta_t): Population haplotype frequency/probability

Latent Variables (Z): Frequency/Probability of each pair of haplotypes that can generate one of the genotypes in D (c) (10 points) Start by assuming that all haplotypes are equally likely; do one complete E and M step of this algorithm, and find a better prediction about the distribution of haplotypes.

		7		μνς,	ineta_i			
10122	Pairs 10111, 00011 10011, 00111	Z 0.5 0.5	00000	1/8	0.5/6 = 1/12			
			00001	1/8	0.5/6 = 1/12			
			00010	1/8	1/12			
			00011	1/8	(.5 + .5)/6			
21222	10111, 11111	1	00111	1/8	1/12			
	00000 00011	05	10011	1/8	1/12			
00000, 00011		0.5	10111	1/8	(1+.5)/6			
			11111	1/8	1/6			
Ζ_{	h_i,h_j} = P(h_i)*	P(h_j)	/ Sum					
(P(h_i)*P(h_j) for all h_i, h_j such that								
h_i	+ h_j = g							

- 3. You are given a standardized matrix of genotypes X, and a phenotype vector Y.
 - (a) (5 points) Write an equation for the effect of **all** SNPs on the phenotype Y, assuming that the error $\epsilon \sim N(0, \sigma^2 I)$.

$$Y = \mbox{mu} + X\beta + \epsilon$$
$$Y = m^*1 + Xb + e$$
$$(Y = n \times 1; X = n \times p; b = p \times 1, e = n \times 1)$$
$$Y = m + Sum(X_i b_i) + e$$

(b) (10 points) Derive the equation for a test on a single SNP by combining the effects of all other SNPs in to a single term.

 $Y = m + X_k * b_k + Sum(i =/=k) \{X_i * b_i\} + e$ $Y = m + X_k * b_k + g + e$ Assume that most of the true effects are small $Var(g) = Var(bX) = (bX)^T bX = X^T b^T b X =$ $s^2_g XX^T = s^2_g K$ $Y = m + b_k * X_k + g + e$ $Y \sim N(m + b_k X_k, s^2_e I + s^2_g K)$ $V = s^2_e I + s^2_g K; \text{ compute } V^{(-1/2)}$ $V^{(-1/2)}Y \sim N(V^{(-1/2)}[m + b_k X_k],$ $V^{(-1/2)}Y \sim N(V^{(-1/2)}[m + b_k X_k], I)$ Because the matrix has variance equal

to the identity, standard regression can be used

- 4. Naive Bayes
 - (a) (10 points) Use Bayes' rule to write out an equation for $P(\theta|D)$

P(theta|D) = P(D|theta)P(theta)/P(D)

P(thetalD) = posterior

P(Dltheta) = likelihood (of the data given the params)

- P(theta) = prior probability
- P(D) = probability of dataset [hard to compute]

= Sum(theta) P(Dltheta) P(theta)/sum(P(theta)

Understand connection between EM slides and Bayes' Law

(b) (10 points) Assume you have a null hypothesis of the form $H_0: Y \sim \mathcal{N}(0, \sigma^2)$ and $H_1: Y \sim \mathcal{N}(\mu, \sigma^2)$. What is the equation for the Bayes factor comparing H_0 and H_1 ?

 $\frac{P(H_1 | D)}{P(H_0 | D)} = \frac{Product(N(mu - x_i, s^2))}{Product(N(x_i, s^2))}$

- 5. Principal Components Analysis
 - (a) (10 points) What is the relationship between the principal components of a matrix X and eigenvalues of $X^T X$?

The principal components of X are the eigenvectors corresponding to the eigenvalues of X X^AT.

The 1st PC is the eigenvector corresponding to the largest eigenvalue of XX^T, and it is the 1 dimension about which the variance of X is the largest