CS118 Midterm

TOTAL POINTS

87.5 / 120

QUESTION 1

120 pts

1.1 1.1 (TCP as a transport) 3 / 3

- √ 0 correct
 - 0.5 Incorrectly select
 - 0.5 Incorrectly select
 - 0.5 Incorrectly select
 - 1 should select 3 correct options
 - 1 should select 3 options
 - 1 should select 3 options

1.2 1.2 (stateful) 2.5 / 3

- O Correct
- √ 0.5 Select a wrong answer
 - 0.5 Select a wrong answer
 - 0.5 Select a wrong answer
 - 3 Wrong answer, leave blank

1.3 1.3 (p2p) 1/1

- √ 0 Correct
 - 1 Incorrect (b is not chosen)
 - 0.5 At least one other (incorrect) options selected

1.4 1.4 (HTTP request/response info) 2 / 3

- O Correct
- 1 missing d
- 1 missing e
- √ 0 missing f
- √ 1 One wrong answer (a-c)
 - 2 Two or more wrong answers (a-c)

1.5 Protocol is ... 1/2

- √ 1 At least one correct (format/order/actions)
 - O Two or more correct (format/order/actions)
 - 2 Incorrect

1.6 Most common HTTP method 2/2

- √ + 1 GET
- √ + 1 POST

+ O Incorrect/Blank

1.7 DNS and HTTP 2/2

- √ + 0.5 replicated
- √ + 0.5 cached
- √ + 0.5 replicated
- √ + 0.5 cached
 - + O Incorrect

1.8 Common TCP/UDP functions, unique

TCP functions 4 / 4

- √ + 2 multiplexing/demultiplexing/error detection
 - + 1 half credit to common function
 - + 1 delivery guarantee
- √ + 1 flow control
- √ + 1 congestion control
 - + O Incorrect
 - + 1 Incorrect: send/connect/accept/listen calls

QUESTION 2

2 20 pts

2.1 2.1 Delay for 12th packet 0 / 6

- + 6 Correct
- + 3 Correct transmission delay
- √ 1 Incorrect number of RTTs
 - + 0 Incorrect

2.2 2.2 Total delay 0.75 / 2

- + 2 Correct 501ms, accepted answer if +-100ms
- + 0.75 Correct transmission delay
- √ + 0.75 Correct total number of packets
 - + 0 Math problem
 - + O Incorrect

2.3 2.3 Total delay with 100ms propagation

delay 3/6

- O Correct (correct 2.64s, accepted 2-3s)
- 1 No or incorrect explanation provided

- ✓ 3 Wrong value, but within reasonable range from the correct (1-2, 3-5)
 - 0.5 Incorrect RTT calculation
 - 6 Incorrect
- 2.4 2.4 Shortest delay / adjust window 4 / 6
 - O Correct (20-21, delay ~600ms)
 - ✓ 0.5 No (or incorrect) optimal delay calculated
 - ✓ 1.5 Mentioned value >21, but no or incorrect explanation provided
 - 6 Incorrect
 - 3 Mentioned to increase window, but <21 or way too many

QUESTION 3

- 3 20 pts
- 3.1 3.1 Query for amazon.com/A 2 / 4
 - O Correct
 - √ 2 Second query incorrect
 - 1 Problem with one of the gueries
 - 4 Incorrect / no answer
- 3.2 3.2 Query for google.com/MX 3/3
 - √ 0 Correct
 - 1 Issue with the answer (one unnecessary query)
 - 1.5 Didn't include query t google.com NS
 - 3 Incorrect / missing / more than one unnecessary query
- 3.3 3.3 Query for

mail/hangout.google.com/AAAA 3 / 5

- O Correct
- 1 Extra (or missing) query for 1st query
- 1 Extra (or missing) query for 2nd query
- 2 No more than two unnecessary queries for one of the queries
 - 3 More than 2 unnecessary queries for one
 - 5 Incorrect / missing

3.4 3.4 List cached records 2.25 / 5

- + 2 google.com/MX, primary.google.com/A, backup.google.com/A (from 3.2)
- √ + 1 google.com/NS
- √ + 2 mail.google.com/AAAA,

hangout.google.com/AAAA

- √ 0.75 One wrong domain
 - 1.5 Two wrong domains
 - 1 Type of records not specified
 - + O Incorrect / missing
- 3.5 3.5 Reachable 3 / 3
 - √ O Correct

QUESTION 4

4 20 pts

- 4.1 4.1 Sequence numbers 10 / 10
 - √ + 1 One correct sequence number of flag
 - √ + 1 One correct sequence number of flag
 - √ +1 One correct sequence number of flag
 - √ + 1 One correct sequence number of flag
 - √ + 1 One correct sequence number of flag
 - √ + 1 One correct sequence number of flag
 - √ + 1 One correct sequence number of flag
 - √ + 1 One correct sequence number of flag
 - √ + 1 One correct sequence number of flag
 - √ + 1 One correct sequence number of flag
 - + O Incorrect/blank
- 4.2 4.2 Missing exchange 5 / 5
 - √ 0 Correct
 - 0.5 One or more incorrect / unnecessary / missing exchanges
 - 0.75 One flag or sequence number is wrong
 - 1.5 More than one flag or sequence number is

wrong

- 2.5 Sequence numbers / flags (or their relation)

not shown

- 5 Incorrect / missing

- 4.3 4.3 Max TCP pipeline 3/5
 - O Correct (or close)
 - 2 Too large or too small
 - 2 Incorrect statement that there is no limit
 - √ 2 The result is not throughput (bit/s or byte/s)
 - 0.5 Right direction, but didn't give complete

answer

- 5 No attempt
- 3 Attempted, but didn't give the answer

5 20 pts

5.1 5.1 UDP checksum 2.5 / 5

√ + 1.5 Found checksum in the packet

+ **4** Attempted to calculate 1-complement of 1-complement sum of 16-bits

√ + 1 Gave an answer without basis

- + 2.5 Calculated sum, but didn't indicate 1-complement of 1-complement / not correct items added
- + **2.5** Attempted calculate but not 1-complement of 1-complement sum or not 16-bit numbers
 - + O No attempt / incorrect

5.2 5.2 IPv4 header checksum 2.5 / 5

√ + 1.5 Found checksum in the packet

+ **4** Attempted to calculate 1-complement of 1-complement sum of 16-bits

√ + 1 Gave an answer without basis

- + 2.5 Calculated sum, but didn't indicate 1-complement of 1-complement / not correct items added
- + **2.5** Attempted calculate but not 1-complement of 1-complement sum or not 16-bit numbers
- + 2 Give semi-valid answer not to the question asked
 - + O No attempt / Incorrect

5.3 5.3 Demultiplex 6 / 6

√ - 0 Correct

- **0** Not mentioned that OS uses UDP-specific lookup table to find app socket
- 3 Incorrect mentioning of sourceIP/sourcePort as part of the lookup
 - 1 Didn't mention destination IP for demultiplexing
- 3 Didn't mention use of destination ip&port to lookup in kernel's UDP socket-app table
 - 4 Only showed port number
 - 6 Incorrect / missing

5.4 5.4 UDP facts 3 / 4

- + 1 UDP payload (2^16)
- √ + 1 Port numbers (0, 2^16-1), ok if start 1024
- √ + 1 Number of distinct apps (2*2^16)

√ + 1 Number of apps to prevent (2^16)

+ 0 Incorrect

QUESTION 6

6 20 pts

6.1 6.1 Secret message 3 / 4

- O Correct
- 1 Mentioned public key encryption, but didn't discuss how to get public key for a person you never met before
- 0.5 Mentioned how to get public key, but didn't define why it should be trusted
 - 4 Incorrect / missing
 - 3 Mention PGP, but in incorrect context

6.2 6.2 Info from email 2 / 4

- + 4 Correct
- √ + 2 Mentioned PGP signing and telling (out-ofband) your key (key fingerprint) to the professor / out-of-band acknowledging sending email
 - + 2 At least two objective info items listed
 - + 1 At least one objective info listed
 - + O Incorrect / missing

6.3 6.3 Invalid HTTPS 4/4

- ✓ O Correct (At least 2 reasons listed)
 - 2 Only one correct reason listed
 - 4 Invalid / missing answer

6.4 6.4 Multiple DNS records for youtube.com/A 4 / 4

outube.com// +/ +

- ✓ O Correct (at least 3 correct reasons listed)
 - 1 Only two correct reasons listed
 - 2 Only one correct reason listed
 - 0 Incorrect/missing answer

6.5 6.5 HTTP/2 vs QUIC 4 / 4

- ✓ 0 Correct
 - 1.5 Only one reason listed
 - 4 Incorrect/missing answer

CS118 Spring 2017 Midterm Exam

1 hour 50 minutes
Close book and closed notes,
except a SINGLE piece of paper as a cheat sheet.

NO use of any device except calculators.

- This exam has 7 pages, including this cover page. Do all your work on these exam sheets.
 NO EXTRA PIECES OF PAPER WILL BE ALLOWED.
- Cross out all the scratch work that you do not want to be counted as part of your answer before you submit the exam.
- Be specific, clear, concise in your answers, and explain your answers.
- When the answer to a problem is not immediately clear, do not simply dump everything, relevant or irrelevant, on the paper. Irrelevant answers may lead to point-deduction as they show the lack of understanding of the problem.

Your name:	
Student ID:	

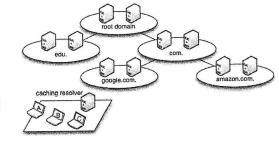
Problem 1 (20 points)

1.1 Circle	e zero or sever	al application-lay	er protocols	that use only	TCP as	their transport	t laye	er protoco	ls?	
(a) (b)	HTTP 1.1/2 QUIC	(d	SMTP IMAP/POF	23	(e) (f)	BitTorrent DNS				MPEG/DASH Skype/VoIP
1.2 Circle	e zero or sever	al application-lay	er protocols	that are state	ful?					
(a) (b)	HTTP 1.1/2 QUIC ☀	× (c)	SMTP IMAP/POF	23	(e) (f)	BitTorrent DNS				MPEG/DASH Skype/VoIP
1.3 Circle	e zero or sever	al statements tha	t are TRUE 1	for a peer-to-	peer syst	em?				
(c) (d)	Transferring a They are not a Are easier to i	ways need to be file is faster than as scalable as clie implement than c	an equivaler nt server arch ient-server sy	itecture ≭ ystems ≭						
1.4 Circl	e zero or sever	al pieces of infor	mation one C	CANNOT ge	t by look	ing at an HTT	TP re	quest mes	sage?	
	Name of the w Server's host i		(c) Se (d) Se	erver's port n erver's IP add	umber dress			Requester Full URL		
1.5 Fill i	n the blanks:									
The netv	vork protocols	(and protocols in	general) def	ine						
			how to	communite	te			_,		
	how to	delives data	a E	, and	y dete	imite resul	ree	availabi	hy	•
The mos	st common HT	TP method types	are		how to				0	
				and		POST				
DNS pro	otocol is a high	ıly available data								
and a control of		replicate								_•
НТТР р		ale because WEB								
***** F		be cache		and _		replicated				_•
The com	mon function	(at least one) bet				J				
1110 0011							- XXI	•		
In additi	ion to this fire	etion, TCP also p	দ	1	1 0					
in additi		convol		costeal		and	C.A	aethw i	estab	lishmear
	confestion (CONTO	9100	Or						

Problem 2 (20 points) Two hosts A and B are connected by a link with bandwidth of 1 Mbps (10⁶ bits-per-second) and propagation delay between A and B is 1 millisecond. Host A has a 500,000-bit file to send to host B. A uses GoBackN reliable transport protocol and divides the file into 10,000-bit packets. The GoBackN protocol uses a fixed window size of 4 packets. You may assume the *transmission time* of ACK packets is negligible and no data or ACK packet ever gets lost.

2.1 (6 points) How long will it take before the 12th packet has completely arrived at Host B? (drawing a diagram may help answer this question).

2.2 (6 points) How long will it take before the entire file is received by Host B?


2.3 (6 points) How long will it take before the entire file is received by Host B if propagation delay is increased to 100 milliseconds?

2.4 (8 points) Assuming propagation delay stays 100 milliseconds, is there a way for the file to be delivered to the host B faster by adjusting the window size? If so, what is the minimal window size that would allow the file to be received at B with shortest possible time (assume no other settings are changed)?

Problem 3 (20 points) Consider the following environment with a local DNS caching resolver and a set of authoritative DNS name servers.

Assume that initially,

- the caching resolver cache is empty,
- TTL values for all records is 1 hour,
- RTT between stub resolvers (hosts A, B, and C) and the caching resolver is 20 ms,
- RTT between the caching resolver and any of the authoritative name servers is 150 ms
- There are no packet losses
- All processing delays are 0 ms

3.1 (4 points) At T=0 min, Host-A sends a query for "A record for amazon.com", and after receiving the answer sends a query for "A record for www.amazon.com". How long did it take to receive all the answers?

3.2 (3 points) At T=40 min, Host-B sends a query for "MX record for google.com" that returns

10 primary.google.com. MX google.com. IN 3600 30 backup.google.com. MX 3600 IN google.com. 74.125.28.27 Α

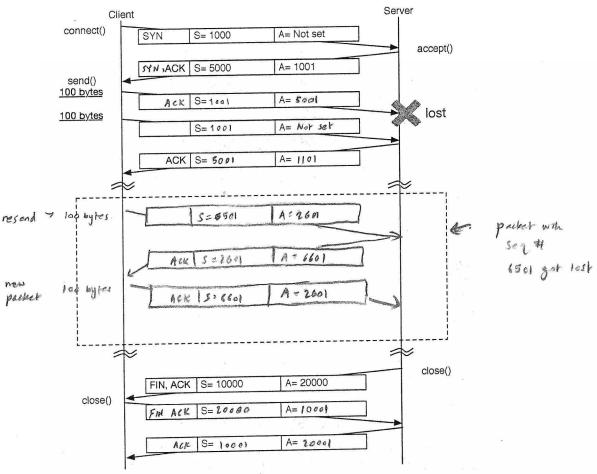
primary.google.com. 3600 IN 173.194.211.27 backup.google.com. 3600 IN Α

(Similar to NS records, the DNS server may return "glue" A/AAAA records in addition to the requested MX records.) How long did it take to get the answer?

grey con for gogle. com (150) + grey gogle. con (150) + cache (20)

3.3 (5 points) At T=70 min, Host-C sends a query for "AAAA (IPv6) record for mail.google.com", following at T=75 mins with a query for "AAAA (IPv6) record for hangout.google.com". How long did it take for Host-C to receive each of the answers (i.e., relative to T=70min for the first, and relative to T=75 mins for the second)?

- a) eachet 20) + root (150) + come 150) + googla com (150) = 470 ms
- b) google. con (150) + cache (20) = 170 ms


3.4 (5 points) List DNS records that the caching resolver has at T=90 minutes

NS for noot, NS for com, NS for gogsle-com AAAA records for mail. google. com, hangout. google. com

- 3.5 (3 points) At T=100 minutes, all the authoritative servers for .com go offline. Circle the domain names that can be resolved by Host-A?
 - (a) www.google.com
- (b) hangout.google.com (c) doc.google.com

- (d) www.amazon.com
- (e) video.amazon.com
- (f) aws.amazon.com

Problem 4 (20 points) The following diagram shows a sequence of TCP packets for a client/server from your project 1, which include some of the sequence, acknowledgement numbers, and flags.

- **4.1 (10 points)** In the figure above, fill in all the missing values for sequence, acknowledgement numbers and flags (SYN, ACK, FIN). For acknowledgement number write "Not set" if acknowledgment flag not set.
- **4.2 (5 points)** One of the packets got lost. In the dotted box above, add the missing exchanges between the client and the server just after the loss has been detected. In the exchange, include flags, sequence number, and acknowledgement number (if applicable).

4.3 (5 points) What is the theoretical maximum of the TCP pipeline?

For a link with 500ms round trip delay imaginary 1000 Tbits/s link bandwidth, what is the maximum throughput that TCP protocol can sustain for that link (assume maximum packet size is 1000 bytes, hosts have infinite amount of buffering memory)?

	0	8	16	24	31		
	Version II	IL DS fiels	ECN	Total Length		45 00	00 22
į		dentification	Flags	Fragment Offset		23 c5 40 11	00 00 00 00
	Time to Liv	e Protoco		Header Checksum		7f 00	00 01
		S	Source Address	Address		7f 00	00 01
		De	stination Addres			na na ulukuwana pamaka pamaka na pamaka na pamaka na 1945.	
		Source Port			c2 6e	03 e8	
		Length		Checksum		00 0e 48 65	fe 21 6c 6c
			Payload			6f 0a	
Pseudo-hea	ader format for	UDP/IPv4 Zeroes	Protoco		Length	a l	w 0h 23
11/1	1110			ource Address 74			
0100	olol	 	Des			i	
5.1 (5 poir	nts) Check corr	ectness of UDP c	hecksum. If it	is incorrect, what sho	ould be the	correct ch	iecksum?
5.2 (5 poin		110		t is incorrect, what sh		e correct cl	hecksum?
@ I)	00100	- A	123	1)011160	-) Chac	- 661	Elso -
5.3 (6 poi	nts) Please desi	cribe how this page	cket can be de	livered to the destinat	tion applic	ation (i.e.,	how OS de-multiplex
this packe	t) and on which	port number this	s application s	nould be listening on.	•		
	Ris O	n UDS; seck	ek ear be	fully identified o	with des	ithnation	It and dest post
	in this	case the des	tuation IP	is given by hex	7500 C	7001 and	s part 1s
1							
	03 e8	which is 490	90.		10 9 A.	0-1	
	03 e8	which is 400	00.		127.00	0.1	
E 4 /4				DP protocol:	127.00	0.1	
	ints) Finish the	following statem	ents about UI		12年。〇(0.1	
The maxi	ints) Finish the	following statem	ents about UI		127.00	0.1	
The maxi	ints) Finish the mum size of a lee for UDP port	following statem JDP payload is numbers is	ents about UI 4 bytes 65536				65536-2
The maxi The range For a con maximun	mum size of a lee for UDP port inputer with two number of dis	following statem JDP payload is numbers is IP addresses (e.g. tinct UDP server)	ents about UI 4 bytes 65536 g., one for wir applications.	eless and one for wire	d), there c	ould be	131072
The maxi The range For a con maximun	mum size of a lee for UDP port inputer with two number of dis	following statem JDP payload is numbers is IP addresses (e.g. tinct UDP server)	ents about UI 4 bytes 65536 g., one for wir applications.	eless and one for wire	d), there c	ould be	131072

Problem 6 (20 points)

6.1 (4 points) Assume that you want to send a secret message over email using PGP/GPG to a person you just googled on the Internet (you found his email and have a secret question to ask). Will you be able to do that? If yes, how (conceptually), if no, why?

> You can energyt your email with either symmetric key or the resignant's public key. The respect can desypt it with symmetric key or his / her private key. For authorition you can send a digital earthcate with your email.

6.2 (4 points) Let's say you sent an email to the professor. If you haven't used PGP/GPG, he will not be able to know for sure that it came from you. List at least two facts that he can learnt from the received email that the sender couldn't fake. What can you do to ensure that the email is from you, including any out-of-band process that may be needed.

- 1) If you signed it with your private key he can use your public key to very that The consil is from you to creste a digital signature
- 21 But anyone can share their public key and pretend to be you. Solution: use catherine authoring such as PGP to prove that the public key is yours.

6.3 (4 points) Let's say you go to a website over HTTPS protocol and get a warning that something is wrong with the certificate and browser rejects to proceed. List at least four reasons what can be wrong with a brief explanation what could have happened.

- 1) Expired eerhocate
- 4) Untrusted root (root may not
- 2) Revoked continue

be tristed)

3) Wrong host (applicant may not have light to alless domain name)

6.4 (4 points) Your professor travels a lot and whenever he has a chance he issues a DNS query for "A record for youtube.com". So far, he collected quite a bit of a collection of different responses. List at least four reasons why he gets different responses.

> "Above" of DNS becase of 1) replicated authoritative servers 2) IPs are changed for sewitty purposes, 3) CDNs may manage servers in multiple regions aren't the world 4) eaching resolvers may live (e.g.

6.5 (4 points) HTTP/2 supports multiple streams and proactive push of data by the server. Give at least 2 reasons why people decided to develop QUIC.

e doesn't have to establish connection QUIC runs over UPP and has app-controlled congretion control It has multiplexing and flow control summer to HTTP2 and also has seeing equilibrat to TLS. Also has forward error corrections connection migration and server push.