1. Bayes rule [6pt]

A packet arrives at a router and will be sent to 2 outgoing links. Link 1 is lossy so the
probability of packet-loss is % Link 2 is loss free. Suppose the packet will go to link 1
with probability % and link 2 with %. What is the conditional probability that the packet

goes to link 2 given that it is not lost?

Answer
_ P(KC) P(C|K)P(K)
P(K|C) = P(C)  P(C|K)P(K)+ P(C|KC®)P(K°)
P(K|C) = —
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. TCP Window Size [6pt]

In a certain version of TCP congestion control schemes, the congestion window size X is
doubled every time a packet is delivered successfully. Let n denote the number of packets
delivered successfully before packet loss occurs. Initially the window size X is set to be 1
(before the first packet is sent). Assume that the probability of packet loss each time is 0.5.

(a) [3pt] Find the pmf of n.
Solution:

The number of packets successfully delivered before loss occurs follows the geometry
distribution.

p(n) =0.5"-0.5 = 0.5"""
where n =0,1,2...

(b) [3pt] What is the expected window size E[X]?
Solution:

E[X] = f:p(n) Lo = io.mﬂ Lo = io.&s = 0
n=0 n=0 n=0



3. Probability Inequalities [8pt]

Label the following statements with either =, < or >. The statements can be labeled
with = if equality always holds, < or > if one of these hold. If no such inequality or
equality holds, label the statement as NONE.

(a) [2pt] P(B) versus 1 — [P(B¢, A) + P(B¢, A°)].
Answer:P(B) =1 — [P(B¢, A) + P(B¢, A%)]

(b) [2pt] py(g(x)) versus px(z) if Y = g(X), where X, Y are discrete random variable,
g(+) is a function.

Answer: py(g(z)) 2 px(z) since py (g(x)) = ()Z: ( )px(U)

(c) [2pt] Probability mass function px(x) versus pxy(x,y) for discrete random variables.
Answer:pxy (7,y) = px(2)py|x (y]7r) < px(z)

(d) [2pt] Probability density function fx(x) versus fxy (z,y) for continuous random vari-
ables.

Answer: fxy(z,y) = fx(x)fy|x(y|r). Since fy|x(y|x) can be any value, so NONE.
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4. Splitting Poisson Distribution [10pt]

The number of tasks arrive at a router is a Poisson (\) variable. The router indepen-
dently routes to computers A or B with probability p and 1 — p respectively. Let Xy be
the total number of tasks, X4 the number of tasks at computer A, and Xp the number
of tasks at computer B.

(a) [4pt] Derive the pmf of X4, Xp.

(b) [1pt] State the condition for two random variables to be independent.

(c) [3pt] Show that X4 and X, are independent based on you answer on (a) and (b).
(d) [2pt] Find the covariance of X and X 4.

Solution: (a) Page 73 of Course Reader.

B B e—/\p)\pa B B e—)\(l_p))\(l — p)b
P(A—a)—W,P(B—b)— (b)'
(b)
Py (a,b) = Pa(a)Pp(b)
(c)
P(A=a,B=0) =20 Z+b p*(1—p)®

e—Ap a e—A(1—p) _\b
= P(A=a)P(B =b) = “3F P21)

cov(N, A) = cov(A+ B, A) = cov(A, A) + cov(B, A)
=var(A4) = \p



5. Traffic of Wireless Communications [8pt]

We model the number of wireless connections to a base station as Geometric distribu-
tion with parameter p. The traffic per connection is Poisson(\).

(a) [4pt] Find the Z-transform of total traffic at the base station.

(b) [4pt] Find the first and second moment of total traffic using the Z-transform you
found. Calculate the numerical values when p = 0.1 and A = 100.

Solution:
The Z-transform of total traffic is
-A(1-2)
pz pe p
G p— G G T . = —z p— pr—

The first and second moment are

d A —A(1-2) A
Gy(2), _ pe i — 2 1000

& T e S 1)

dey (Z) | . 7/\2pe_>‘(1_z) [6)‘(1_2)7(17p)}2+)\p€_)\(1_z)2A[6>‘(1_2)7(17p)}€)\(1_z)
dz2 z=1— [ek(liz)_(l_p)rl z=1
202 A2

p
E[X?] =2 4+ 2 — 2 = 1901000



