
1. Bayes rule [6pt]

A packet arrives at a router and will be sent to 2 outgoing links. Link 1 is lossy so the
probability of packet-loss is 2

3
. Link 2 is loss free. Suppose the packet will go to link 1

with probability 1
4

and link 2 with 3
4
. What is the conditional probability that the packet

goes to link 2 given that it is not lost?
Answer

P (K|C) =
P (KC)

P (C)
=

P (C|K)P (K)

P (C|K)P (K) + P (C|KC)P (KC)

P (K|C) =
9

10

1
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2. TCP Window Size [6pt]

In a certain version of TCP congestion control schemes, the congestion window size X is
doubled every time a packet is delivered successfully. Let n denote the number of packets
delivered successfully before packet loss occurs. Initially the window size X is set to be 1
(before the first packet is sent). Assume that the probability of packet loss each time is 0.5.

(a) [3pt] Find the pmf of n.
Solution:
The number of packets successfully delivered before loss occurs follows the geometry
distribution.

p(n) = 0.5n · 0.5 = 0.5n+1

where n = 0, 1, 2...
(b) [3pt] What is the expected window size E[X]?

Solution:

E[X] =
∞∑
n=0

p(n) · 2n =
∞∑
n=0

0.5n+1 · 2n =
∞∑
n=0

0.5 =∞
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3. Probability Inequalities [8pt]

Label the following statements with either =, ≤ or ≥. The statements can be labeled
with = if equality always holds, ≤ or ≥ if one of these hold. If no such inequality or
equality holds, label the statement as NONE.

(a) [2pt] P (B) versus 1− [P (Bc, A) + P (Bc, Ac)].
Answer:P (B) = 1− [P (Bc, A) + P (Bc, Ac)]

(b) [2pt] pY (g(x)) versus pX(x) if Y = g(X), where X, Y are discrete random variable,
g(·) is a function.
Answer: pY (g(x)) ≥ pX(x) since pY (g(x)) =

∑
u:g(u)=g(x)

pX(u)

(c) [2pt] Probability mass function pX(x) versus pXY (x, y) for discrete random variables.
Answer:pXY (x, y) = pX(x)pY |X(y|x) ≤ pX(x)

(d) [2pt] Probability density function fX(x) versus fXY (x, y) for continuous random vari-
ables.
Answer: fXY (x, y) = fX(x)fY |X(y|x). Since fY |X(y|x) can be any value, so NONE.
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4. Splitting Poisson Distribution [10pt]

The number of tasks arrive at a router is a Poisson (λ) variable. The router indepen-
dently routes to computers A or B with probability p and 1− p respectively. Let XN be
the total number of tasks, XA the number of tasks at computer A, and XB the number
of tasks at computer B.

(a) [4pt] Derive the pmf of XA, XB.

(b) [1pt] State the condition for two random variables to be independent.

(c) [3pt] Show that XA and Xb are independent based on you answer on (a) and (b).

(d) [2pt] Find the covariance of XN and XA.

Solution: (a) Page 73 of Course Reader.

P (A = a) =
e−λpλpa

(a)!
, P (B = b) =

e−λ(1−p)λ(1− p)b

(b)!

(b)
PA,B(a, b) = PA(a)PB(b)

(c)

P (A = a,B = b) = e−λλ(a+b)

(a+b)!

(
a+ b
a

)
pa(1− p)b

= P (A = a)P (B = b) = e−λpλpa

(a)!
e−λ(1−p)λ(1−p)b

(b)!

(d)
cov(N,A) = cov(A+B,A) = cov(A,A) + cov(B,A)
= var(A) = λp
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5. Traffic of Wireless Communications [8pt]

We model the number of wireless connections to a base station as Geometric distribu-
tion with parameter p. The traffic per connection is Poisson(λ).

(a) [4pt] Find the Z-transform of total traffic at the base station.

(b) [4pt] Find the first and second moment of total traffic using the Z-transform you
found. Calculate the numerical values when p = 0.1 and λ = 100.

Solution:
The Z-transform of total traffic is

GY (z) = GN(GX(z)) =
pz

1− (1− p)z
|z=e−λ(1−z) =

pe−λ(1−z)

1− (1− p)e−λ(1−z)
=

p

eλ(1−z) − (1− p)
The first and second moment are

dGY (z)

dz
|z=1 =

λpe−λ(1−z)

[eλ(1−z) − (1− p)]2
|z=1 =

λ

p
= 1000

d2GY (z)
dz2
|z=1=

−λ2pe−λ(1−z)[eλ(1−z)−(1−p)]2+λpe−λ(1−z)2λ[eλ(1−z)−(1−p)]eλ(1−z)

[eλ(1−z)−(1−p)]4
|z=1

= 2λ2

p2
− λ2

p

E[X2] = λ
p

+ 2λ2

p2
− λ2

p
= 1901000


