CS 111 Midterm

Royson Lin

TOTAL POINTS

68.5/100

QUESTION 1

1Page replacement algorithm choice 10/10

v - 0 pts Correct

- 10 pts Incorrect/no answer

- 5 pts Incorrect/no explanation of why algorithm
choice matters

- 5 pts Incorrect/no explanation of likely difficulties
upon poor algorithm choice

- 2.5 pts Explanation of why algorithm choice
matters unclear/needs more detail

- 2.5 pts Explanation of poor algorithm choice's

consequences unclear/needs more detail

QUESTION 2

2 Spin lock performance 10/10

v - 0 pts Correct

- 10 pts Incorrect/no answer

- 5 pts Incorrect/no explanation of how spin locks
cause performance problems

- 5 pts Incorrect/no explanation of how a thread can
harm its own performance

- 2.5 pts How spin locks cause performance
problems unclear/needs more detail

- 2.5 pts How a thread can harm itself with spin

locks unclear/needs more detail

QUESTION 3

3 Virtual address translation 10/10

v - 0 pts Correct

- 3 pts Missing one case

- 6 pts Missing two cases

- 1 pts The page table doesn't get full in the sense
of being too full. At most, it contains an entry for
every page.

- 2 pts You never "search" a disk for a page. You

always know exactly where it is.

- 2 pts You don't search page tables for invalid
addresses, since they won't be there.

- 3 pts Third case same as example case.

- 1 pts And what happens in the third case?

- 2 pts If the page is supposed to be somewhere
and can't be found anywhere, that's an OS crash, not
a page fault. This must never happen.

- 3 pts I/O does not occur in the middle of handling
an address translation.

- 1 pts First outcome results in page fault.

- 1 pts MMU cache page table entries, not pages

- 10 pts Diagram does not describe cases.

- 7 pts Imprecise description of situation and actions
for all three cases.

- 2 pts What precisely do you mean by "system will
continue"?

- 1 pts Entire page table isn't cached in MMU.
Individual entries are.

- 1 pts In third case, if page isn't in RAM, you have to
pay to get it from disk. Context switches may result,
but that's not the main activity required.

- 1 pts How does the system "add a page to the
frame"?

- 10 pts You did not answer the question

-1 pts In case 3, cache what in the PTE?

- 2 pts You don't make an invalid page valid by
simply allocating a page frame.

- 3 pts MMU must not allow one process to access
another process' pages, regardless of their address.

- 3 pts TLB doesn't cache actual pages.

- 2 pts What is the consequence of case 27

-1 pts If a page is on disk, it will not have an entry in
the TLB.

- 6 pts Cases 2 and 3 are not requests to translate

an address.

- 3 pts Dirty bit is only relevant for page
replacement, not address translation.

- 3 pts We don't move an invalid page into a
process' working set because it issued an address in
the page.

- 1 pts Page on disk is listed in page table, just with
present bit not set.

- 2 pts If page is not in a RAM page frame, it's on
secondary storage and access will be very slow.

- 2 pts Valid bit and present bit have different
meanings.

- 2 pts In first case, must get page off disk into a
page frame

- 3 pts First case won't happen.

- 1 pts More details on first case.

- 3 pts Third case won't happen.

- 4 pts Click here to replace this description.

QUESTION 4
4 Results of fork 10710
v - 0 pts Correct

- 2 pts Does not mention pid difference/ return code

- 5 pts Unclear about differences between parent
and child
- 10 pts Completely wrong

- 3 pts Insufficient explanation

- 1 pts Does not mention utility of return code/ pid in

differentiating between parent and child

- 1 pts fork() call in child returns O not 1 or something

else

- 10 pts No answer

- 4 pts Does not provide any explanation for why
stated difference is useful

- 2 pts Copy-on-write, not always

- 2 pts Child does not have a PID of zero, that is the

return value from fork()

- 0 pts correct

QUESTION 5
5 Scheduling for turnaround time 6 /10

- 0 pts Correct
- 10 pts No answer

- 5 pts RR does not finish short jobs quickly, thus
does not optimize average turnaround time.

- 5 pts Non-preemptive algorithms allow long job to
keep new short jobs waiting.

- 5 pts Did not specify which algorithm to use.

- 2 pts SJF or STCF? Which?

- 3 pts STCF over SJF, due to preemption issue.

- 5 pts FIFO chooses early arrivers over short jobs,
harming average turnaround time. One long job
could kill your average.

+ 4 pts Preemption is indeed necessary

- 8 pts This approach does not consider that
running short jobs first reduces average turnaround
time.

- 4 pts Earliest deadline first only applies to RT
scheduling.

- 3 pts STCF will do better, if one has a good
estimate of job run time.

+ 2 pts Good explanation.

- 8 pts Not clear what algorithm you mean. Poor
explanation of why to use it.

- 4 pts Insufficient explanation.

v - 4 pts Without knowledge of job run times, MLFQ
will probably do better than your choice.

+ 2 pts Mentioned SJF, but did not favor over other
incorrect choices.

- 3 pts Preemptive or not?

QUESTION 6
6 Changing page size 10/10

v - 0 pts Correct

- 3 pts No external fragmentation with either page
size.

- 1 pts More details on internal fragmentation effect.

- 3 pts Less internal fragmentation, not more, none,
or the same.

- 2 pts More details on non-fragmentation effect

- 3 pts No discussion of external fragmentation

- 4 pts No discussion of another effect

-1 pts As long as the pages are in RAM, the speed
of access won't be much different.

- 4 pts This effect will not occur.

- 4 pts Page size does not really affect allocation
requests.

- 3 pts With paging, need not use method like
best/worst fit.

- 4 pts Thrashing is not directly related to page size.
It is based on actual memory use.

- 3 pts Non-contiguous allocations across page
frames already happens with 4K pages.

- 1 pts More details on external fragmentation effect.

QUESTION 7
7 Flow control and shared memory 2.5/10
- 0 pts Correct
- 5 pts Flow control for sockets not
explained/incorrect
v - 5 pts Absence of flow control for shared memory
not explained/incorrect
v - 2.5 pts Flow control for sockets unclear
- 2.5 pts Absence of flow control for shared memory
unclear
- 10 pts Incorrect
- 1 pts Sockets aren't unidirectional

- 1 pts Sockets don't imply 2 machines

QUESTION 8
8 ABls and software distribution g/10
- 0 pts Correct
- 3 pts Does not mention that ABIs specify how an
application binary must interact with a particular OS
running on a particular ISA
- 3 pts Does not mention the need for fewer
versions of code / If OS is made compliant then code
compiled to an ABI will run on any compliant system
- 5 pts Unclear about what an ABl is
v - 2 pts Does not mention lack of requirement for
user compilation
- 3 pts Unclear answer
- 2 pts Needs more detail

- 10 pts Wrong

QUESTION 9
9 Relocating partitions 2/10

Page 3

- 0 pts Correct

- 1 pts More generally, virtualization (both
segmentation and paging) allows relocation.
v - 8 pts Virtualization is the key to relocation.

- 7 pts Swapping alone won't do it. You need
virtualization of addresses.

- 10 pts Totally wrong. Virtualization is the
technique.

- 4 pts Insufficient explanation.

- 10 pts No answer.

- 2 pts Insufficient explanation

- 2 pts TLB is just a cache. General answer is
virtualization.

- 0 pts Not really called "address space identifiers,"
but the concept is right

- 3 pts this is virtualization, not swapping.

- 4 pts Other way around. To relocate, you change
the physical address, not the virtual address.

- 7 pts Incorrect explanation of the aspect of

virtualization that allows relocation.

QUESTION 10
10 Semaphore bug o/10

- 0 pts Correct
v -10 pts Incorrect

- 0 pts Balance checked against withdrawal before
obtaining semaphore: balance could decrease
between check and lock if unspecified code contains
decrement to balance

- 0 pts Balance checked against withdrawal before
obtaining semaphore: balance could decrease
between check and lock if concurrent run of thread 2

- 5 pts Balance checked against withdrawal before
obtaining semaphore: incomplete assumptions

- 10 pts Assumed bug in unspecified code

- 1 pts semaphore should be initialized with 3

- 3 pts b = b+a not being atomic is irrelevant here
and cannot cause a bug

- 2 pts Another strange part [...] <- That comment is

incorrect

Midterm Exam
CS 111, Principles of Operating Systems
Fall 2018

Name: Ro\!&@ﬂ Lin
Student ID Number: |0 “jA0 252

This is a closed book, closed note test. Answer all questions.

Each question should be answered in 2-5 sentences. DO NOT simply write everything
you remember about the topic of the question. Answer the question that was asked.
Extraneous information not related to the answer to the question will not improve your
grade and may make it difficult to determine if the pertinent part of your answer is
correct. Confine your answers to the space directly below each question. Only text in
this space will be graded. No question requires a longer answer than the space provided.

1. Why is proper choice of a page replacement algorithm critical to the success of an
operating system that uses virtual memory techniques? What is the likely difficulty if a
poor choice of this algorithm is made by the OS designer?

Page replacement algoritoms decide which pages o

evick from wemory as new enes ace necded. Proper dnoice

o such an algocithm is ceitical becayse picking the Wdlg pages

hoevict can cause more reads fam disk Hian NEcessary, showing
the progcam down ,%y faches of powes of 0 The reading o,
disk occurs: bemuse Pages ace stored on disk and fedthed into
memety as peeded. ?a’c%«am% a éaaé

better Perfomance as all e benefits of temporal andh

ﬁﬁﬁ%é’%% howsener, (eads +o

spatial
lo %Eé’%y aC¢ Yeaped,

2, Spin locks can cause performance problems if not used carefully. Why? In some
cases, a thread using a spin lock can actually harm its own performance. Why?

Spin locks oceur when a Hheead doeg nothing but wait Hie a lock

b be released, checkin g Ve dad over fndefinitely Hr s event.
¥ ned used cacefully , spin locks wm&e processar z;w?’@éa% sinee the
processer |

burng c:\g@i@‘& ({m@ﬂ;ﬁ‘%{;’}ﬁ ‘%iﬁ% @@@@ {mﬁ; %’%M%‘%' ‘ﬂ’sif» e S
not @mgasgm used Mole @m&e@ﬂ%ﬁy ’ j@az% o a lesser %Xﬁ’@ﬂ"@') ln dhe
cose of o ging‘e QP%}} a thread Using @ Sg‘é@n lock would harm its
oW performance sinee no sther Hhreads would be able o uce the
OPU, including He sne holding Hhe lock! The only way o exit
Such o situation would be € 4 coptext switch occurred among fhe
gt

theeads, |

ED Assume you are running on a virtual memory system that uses both segmentation
and demand paging. When a process issues a request to access the memory word at
address X, one possible outcome in terms of how the address is translated and the content
of the address is made available is: the address is valid, the page is in a RAM page frame,
and the MMU caches the page table entry for X, resulting in fast access to the word.
Describe three other possible outcomes of the attempt to translate this address and the
actions the system performs in those cases.

|. The address is iavalid. A seamentation fault scours and the
process is terminated by the 0S.

>
‘ / b ¥ Lo . 5
/3, The page 1§ hot Stred in RAM, so e process must o
L + diske o fnd 4
N2 The banativn | in e T
. Iht Transialien S ot cached in the LB , so the proCess must
find & in the poage '%a%g%@ fin ﬁ«mmwy,
4. When a Linux process executes a fork() call, a second process is created that’s

nearly identical. In what way is the new process different? Why is that difference
useful?

When o process fork()s, it creates 4 child process, and Hhe seig tnal
process s e the pacent process, At that oment, beth Processes
are about o retum fam e Hek) call The call will retuen
0 % dhe child proess apd the FID of dhe chid 4o Hpe parent
process. Se the way e bhew process (s different fom e old
on€ is that it bas o differeat PiD. This Aiffeceace is &gg@&i
because You can %} uee, the @iééi’w{ﬁg retura values 4o enter

different code blocks (ke foject 1) and 2) the PIDs
an b€ used o do nings lke Sian

5. If your OS scheduler’s goal is to minimize average turnaround time, what kind of
scheduling algorithm are you likely to run? Why?

To minimize averase turnaround dime, an 0

S gcheduler woyld be
%@;%ﬁ@iy b run

a Round Robin gﬁ%@fdﬂifﬁﬁ algorithm. Reund Robin
Wierks by giving each process a “fair shae " £ CPO fime, {.e.

Mimwgﬁg ench process 1o fake tueng %ﬁ%wh‘% on the CW L,

set apwunt of Hime. This nelps keep processes fom having 4o wail Re JHecs

I finish dheir jobs, which comld fake 1 ong Himes,
i the 95 had an ofade or knew hew %m enth job wo wld

ke, it would prbably use SIF (shortect Job Figk) o e

120 -~
Ouemge fucranund time. But Hhe 08 neflher has pae

is an oracle.
So Round Robin (¢ ihe ey + a0
\‘g L4

6. Assume you start with an operating system performing paged memory allocation
with a page size of 4K. What will the effects of switching to a page size of 1K be on

external and internal fragmentation? Describe one other non-fragmentatlon effect of this
change and why it occurs.

Swildhing 4o o swaller page size will probably fessen internal

fragmentation sine less space will probably be wasted within 4

block. Eydemal fragmentation will not ke affected since fne pages

can be allocated right next o eachy ol in memo(y in both cases,

Swilthing fon UK o WK panes will alSo wmake Yo 4otal anount
, 1

of memery referenced by the TiB §m%{€6r} which could yﬁ@ﬁm%gy
shw things down.

7. An operating system can provide flow control on an IPC mechanism like sockets,
but cannot provide flow control on an IPC mechanism like shared memory. Why?

An 05 can prvide, Flow contol 0w (PC mechanisims like seckets beause

{?ﬂ R &@{fk@f % ’éua’r@' g ¥ f‘“ 4 A ‘, e‘(eg L g ,EE

e the writee fom puthing dota b the chonnel,
Te 0S mzmﬁ" dho

the came for shaced mems Cy beause dhere s
not ®ally a way 1o plevent a pevcess fam wirtlng chan

4% ”%“i?
memsty wilhut log ng all thege changes,

8. Why are application binary interfaces of particular importance for successful
software distribution?

Application binary jntecfces providle on intedace between
application Pgtamming {ntecfaces and insteuckion set
afchitechuces (the s

set of {f‘%&‘%mc%‘i%m Sug poried Ly b dwa‘”@) :
Withoy b A%%S/ {

here would Le no way) port code u
diferent modhines and have it skl work properly because

machineg A might have o different way of g’mg;@@mm%‘z’ﬂg
something like 13+ undec e hood than machine B , and
the Proaam would not kaowt s or how to bandate i

9. Which memory management technique allows us to solve the problem of
relocating memory partitions? How does it achieve this solution?

kﬁi@m%gﬂ% weory pactitions s necessacy due 4o extermal
fragmentation. Paging , dividing memory it fixed -size, waifs,

SolvesS this problem ginee pages can it %@h’gmm&!\y vy

c" o @ ’ i »
ench oher in memary, o o a page is removed, another

ShE can agm?iy take e glace

. 10. The following multithreaded C code contains a synchronization bug. Where is it?

What is the effect of this bug on execution? This is not a full program, but only a part of
a program concerning some synchronization functionality. The fact that it’s not a full
program ISN’T the bug. I am looking here for a synchronization bug. If you find and
specify some other bug that does not have synchronization issues, you will not get any
credit.

sem_t balance lock semaphore;
int balance = 100;

... /* Unspecified code here */

sem_init(&balance_lock semaphore,0,0); /* Initialize the balance semaphore

char add_balance(amount) { 4
sem_wait (&balance_lock semaphore); /* wait to obtain lock on balance
variable */
balance = balance + amount; ’
sem_post(&balance_lock semaphore); /* Release lock after updating
balance */ '

}

void subtract_balance(amount) {
balance = balance — amount;
}

.../* More unspeciﬁed code here */
/* This code is run by thread 1. */
add_balance (deposit);

... /* More unspeciﬁed code here */
/* This code is run by thread 2.*/

if (balance >= withdrawal) {
sem_wait(&balance_lock semaphore); /* wait to obtain lock on balance
variable */
subtract_balance (withdrawal);
sem_post(&balance_lock semaphore);

}

/* More unspecified code */

fobably hat sab Yo dow he fick that we Semaphore lack Junlocke s

inside q fune and e gller L A

