
CS 111 Midterm
Kevin Sung De-Ming Tan

TOTAL POINTS

95 / 100

QUESTION 1

1 Page replacement algorithm choice 10 / 10

✓ - 0 pts Correct

   - 10 pts Incorrect/no answer

   - 5 pts Incorrect/no explanation of why algorithm

choice matters

   - 5 pts Incorrect/no explanation of likely difficulties

upon poor algorithm choice

   - 2.5 pts Explanation of why algorithm choice

matters unclear/needs more detail

   - 2.5 pts Explanation of poor algorithm choice's

consequences unclear/needs more detail

QUESTION 2

2 Spin lock performance 10 / 10

✓ - 0 pts Correct

   - 10 pts Incorrect/no answer

   - 5 pts Incorrect/no explanation of how spin locks

cause performance problems

   - 5 pts Incorrect/no explanation of how a thread can

harm its own performance

   - 2.5 pts How spin locks cause performance

problems unclear/needs more detail

   - 2.5 pts How a thread can harm itself with spin

locks unclear/needs more detail

QUESTION 3

3 Virtual address translation 10 / 10

✓ - 0 pts Correct

   - 3 pts Missing one case

   - 6 pts Missing two cases

   - 1 pts The page table doesn't get full in the sense

of being too full.  At most, it contains an entry for

every page.

   - 2 pts You never "search" a disk for a page.  You

always know exactly where it is.

   - 2 pts You don't search page tables for invalid

addresses, since they won't be there.

   - 3 pts Third case same as example case.

   - 1 pts And what happens in the third case?

   - 2 pts If the page is supposed to be somewhere

and can't be found anywhere, that's an OS crash, not

a page fault.  This must never happen.

   - 3 pts I/O does not occur in the middle of handling

an address translation.

   - 1 pts First outcome results in page fault.

   - 1 pts MMU cache page table entries, not pages

   - 10 pts Diagram does not describe cases.

   - 7 pts Imprecise description of situation and actions

for all three cases.

   - 2 pts What precisely do you mean by "system will

continue"?

   - 1 pts Entire page table isn't cached in MMU.

Individual entries are.

   - 1 pts In third case, if page isn't in RAM, you have to

pay to get it from disk.  Context switches may result,

but that's not the main activity required.

   - 1 pts How does the system "add a page to the

frame"?

   - 10 pts You did not answer the question

   - 1 pts In case 3, cache what in the PTE?

   - 2 pts You don't make an invalid page valid by

simply allocating a page frame.

   - 3 pts MMU must not allow one process to access

another process' pages, regardless of their address.

   - 3 pts TLB doesn't cache actual pages.

   - 2 pts What is the consequence of case 2?

   - 1 pts If a page is on disk, it will not have an entry in

the TLB.

   - 6 pts Cases 2 and 3 are not requests to translate

an address.



   - 3 pts Dirty bit is only relevant for page

replacement, not address translation.

   - 3 pts We don't move an invalid page into a

process' working set because it issued an address in

the page.

   - 1 pts Page on disk is listed in page table, just with

present bit not set.

   - 2 pts If page is not in a RAM page frame, it's on

secondary storage and access will be very slow.

   - 2 pts Valid bit and present bit have different

meanings.

   - 2 pts In first case, must get page off disk into a

page frame

   - 3 pts First case won't happen.

   - 1 pts More details on first case.

   - 3 pts Third case won't happen.

   - 4 pts Click here to replace this description.

QUESTION 4

4 Results of fork 10 / 10

✓ - 0 pts Correct

   - 2 pts Does not mention pid difference/ return code

   - 5 pts Unclear about differences between parent

and child

   - 10 pts Completely wrong

   - 3 pts Insufficient explanation

   - 1 pts Does not mention utility of return code/ pid in

differentiating between parent and child

   - 1 pts fork() call in child returns 0 not 1 or something

else

   - 10 pts No answer

   - 4 pts Does not provide any explanation for why

stated difference is useful

   - 2 pts Copy-on-write, not always

   - 2 pts Child does not have a PID of zero, that is the

return value from fork()

   - 0 pts correct

QUESTION 5

5 Scheduling for turnaround time 5 / 10

   - 0 pts Correct

   - 10 pts No answer

   - 5 pts RR does not finish short jobs quickly, thus

does not optimize average turnaround time.

   - 5 pts Non-preemptive algorithms allow long job to

keep new short jobs waiting.

   - 5 pts Did not specify which algorithm to use.

   - 2 pts SJF or STCF?  Which?

   - 3 pts STCF over SJF, due to preemption issue.

✓ - 5 pts FIFO chooses early arrivers over short jobs,

harming average turnaround time.  One long job

could kill your average.

   + 4 pts Preemption is indeed necessary

   - 8 pts This approach does not consider that

running short jobs first reduces average turnaround

time.

   - 4 pts Earliest deadline first only applies to RT

scheduling.

   - 3 pts STCF will do better, if one has a good

estimate of job run time.

   + 2 pts Good explanation.

   - 8 pts Not clear what algorithm you mean.  Poor

explanation of why to use it.

   - 4 pts Insufficient explanation.

   - 4 pts  Without knowledge of job run times, MLFQ

will probably do better than your choice.

   + 2 pts Mentioned SJF, but did not favor over other

incorrect choices.

   - 3 pts Preemptive or not?

QUESTION 6

6 Changing page size 10 / 10

✓ - 0 pts Correct

   - 3 pts No external fragmentation with either page

size.

   - 1 pts More details on internal fragmentation effect.

   - 3 pts Less internal fragmentation, not more, none,

or the same.

   - 2 pts More details on non-fragmentation effect

   - 3 pts No discussion of external fragmentation

   - 4 pts No discussion of another effect

   - 1 pts As long as the pages are in RAM, the speed

of access won't be much different.

   - 4 pts This effect will not occur.



   - 4 pts Page size does not really affect allocation

requests.

   - 3 pts With paging, need not use method like

best/worst fit.

   - 4 pts Thrashing is not directly related to page size.

It is based on actual memory use.

   - 3 pts Non-contiguous allocations across page

frames already happens with 4K pages.

   - 1 pts More details on external fragmentation effect.

QUESTION 7

7 Flow control and shared memory 10 / 10

✓ - 0 pts Correct

   - 5 pts Flow control for sockets not

explained/incorrect

   - 5 pts Absence of flow control for shared memory

not explained/incorrect

   - 2.5 pts Flow control for sockets unclear

   - 2.5 pts Absence of flow control for shared memory

unclear

   - 10 pts Incorrect

   - 1 pts Sockets aren't unidirectional

   - 1 pts Sockets don't imply 2 machines

QUESTION 8

8 ABIs and software distribution 10 / 10

✓ - 0 pts Correct

   - 3 pts Does not mention that ABIs specify how an

application binary must interact with a particular OS

running on a particular ISA

   - 3 pts Does not mention the need for fewer

versions of code / If OS is made compliant then code

compiled to an ABI will run on any compliant system

   - 5 pts Unclear about what an ABI is

   - 2 pts Does not mention lack of requirement for

user compilation

   - 3 pts Unclear answer

   - 2 pts Needs more detail

   - 10 pts Wrong

QUESTION 9

9 Relocating partitions 10 / 10

✓ - 0 pts Correct

   - 1 pts More generally, virtualization (both

segmentation and paging) allows relocation.

   - 8 pts Virtualization is the key to relocation.

   - 7 pts Swapping alone won't do it.  You need

virtualization of addresses.

   - 10 pts Totally wrong.  Virtualization is the

technique.

   - 4 pts Insufficient explanation.

   - 10 pts No answer.

   - 2 pts Insufficient explanation

   - 2 pts TLB is just a cache.  General answer is

virtualization.

   - 0 pts Not really called "address space identifiers,"

but the concept is right

   - 3 pts this is virtualization, not swapping.

   - 4 pts Other way around.  To relocate, you change

the physical address, not the virtual address.

   - 7 pts Incorrect explanation of the aspect of

virtualization that allows relocation.

QUESTION 10

10 Semaphore bug 10 / 10

   - 0 pts Correct

   - 10 pts Incorrect

   - 0 pts Balance checked against withdrawal before

obtaining semaphore: balance could decrease

between check and lock if unspecified code contains

decrement to balance

✓ - 0 pts Balance checked against withdrawal before

obtaining semaphore: balance could decrease

between check and lock if concurrent run of thread

2

   - 5 pts Balance checked against withdrawal before

obtaining semaphore: incomplete assumptions

   - 10 pts Assumed bug in unspecified code

   - 1 pts semaphore should be initialized with 3

   - 3 pts b = b+a not being atomic is irrelevant here

and cannot cause a bug

   - 2 pts Another strange part [...] <- That comment is

incorrect

Page 3


















