
CS 111 Midterm Exam
Jeffrey Hsinping Xu

TOTAL POINTS

90 / 100

QUESTION 1

1 RAM speedup 9 / 10

 - 0 pts Correct

 - 1 pts It's missing pages, not missing page table

entries.

 - 1 pts The main issue is paging, not swapping

✓ - 1 pts Working set defined as the pages you need,

not the page frames you are given

 - 1 pts TLB is special hardware, not contents of

RAM.

 - 2 pts Fragmentation is not the issue here, since

paging causes little or no fragmentation.

 - 2 pts It's not cache hits here, it's whether you get a

lot of page faults..

 - 1 pts Why does more memory make scheduling

easier?

 - 2 pts Increasing amount of RAM does not

increase TLB size.

 - 3 pts No necessary overhead for having large

quantities of RAM.

 - 3 pts Adding CPU speed will not help with

thrashing.

 - 3 pts Why does more RAM facilitate the working

set better? What are the costs involved?

 - 2 pts Segmentation faults not related to amount of

RAM.

 - 2 pts Lacking details of why costs are lower.

 - 4 pts Not so much that more applications can be

stored in memory, but that more application pages

can be, which is different.

QUESTION 2

2 API/ABI 10 / 10

✓ - 0 pts Correct

 - 3 pts No discussion of API X/ABI Z case

 - 3 pts No discussion of API W/ABI Z case

 - 1 pts Compiling on different machines with same

API should work.

 - 3 pts If API is different, you cannot compile the

program. You must rewrite it.

 - 2 pts No need to recompile if same ABI.

 - 3 pts If API the same and ABI different, must

recompile.

 - 1 pts If machine has API X and ABI Z, then X can

compile to Z.

 - 1 pts You generally can't install a new ABI without

installing a new OS.

 - 1 pts If you rewrite to API W, ABI Y is irrelevant,

since compilation will take care of differences.

 - 2 pts You can use a standard compiler for the API

X/ABI Y -> API X/ABI Z case. No interpreter needed.

 - 2 pts How to account for binary-level

compatibility?

 - 2 pts What issues for third case? How to resolve

them?

 - 2 pts Same ABI implies compatible OS and

hardware.

 - 2 pts The question states that the third and fourth

machines DO support ABI Z.

 - 4 pts Same ABI implies no need to recompile.

 - 10 pts this answer has nothing to do with the

question

 - 4 pts No discussion of 2nd machine with API X/

ABI Y case.

 - 3 pts You can't change a machine's ABI without

changing its OS, typically. For this case, must rewrite

program.

 - 3 pts Just recompile for the API X/ ABI Z case.

 - 0 pts Click here to replace this description.

QUESTION 3

3 Timer interrupts 10 / 10

✓ - 0 pts Correct

 - 1 pts Unclear why timer interrupts make

concurrency problems easier.

 - 5 pts General ability to do preemptive scheduling

is major reason.

 - 3 pts Not really about priority boosting for MLFQ.

More about general preemptive scheduling.

 - 5 pts Not just about real time scheduling. More

about general preemptive scheduling.

 - 2 pts Major reason OS needs to regain control is

to perform preemptive scheduling.

 - 2 pts TImer interrupts do not help with deadlocks.

 - 5 pts Why is it important for the OS to take control

away from a process?

QUESTION 4

4 Limited direct execution 10 / 10

✓ - 0 pts Correct

 - 5 pts Some form of direct execution is required for

performance reasons.

 - 1 pts Limits required for other reasons than taking

over CPU

 - 4 pts Less about virtualization than about

providing good performance.

 - 5 pts Direct execution is not a multiprocessor

issue. A performance issue even on a single

processor.

 - 4 pts Limitation is to prevent processes from

running dangerous instructions, not particularly about

context switching or timer interrupts.

 - 4 pts Direct execution has nothing to do with

disks. It's about raw CPU performance.

 - 4 pts Limitations on direct execution are not

directly related to memory issues.

 - 5 pts The limitation here is not on the OS, but on

the application, to prevent it from running dangerous

instructions.

 - 1 pts Primary limitation is on running certain

instructions.

QUESTION 5

5 Real time preemptive schedulingSe 10 / 10

✓ - 0 pts Correct

 - 5 pts Soft real time systems are not time-sliced

based.

 - 5 pts Meeting deadlines is the primary issue for

soft real time systems.

 - 1 pts MLPQ not used for real time, other than

perhaps having one special real time queue.

 - 4 pts Without preemption, we often can't meet

deadlines in a soft real time system. No way to

ensure a new event with a near deadline gets

scheduled.

 - 3 pts Soft real time systems are not usually tightly

prescheduled, but instead rely on event deadlines for

scheduling.

 - 4 pts For real time system preemption, deadlines

are the criteria for preempting things. Near deadline

events aren't preempted by far deadline events.

 - 4 pts Insufficient explanation, not hitting key

points.

 - 2 pts Fairness and general response time are not

the main issue in soft real time systems.

 - 7 pts Soft real time isn't hard real time.

QUESTION 6

6 Federation frameworks 2 / 10

 - 0 pts Correct

 - 10 pts No answer.

 - 10 pts Completely wrong.

 - 3 pts More details required.

 - 5 pts Not really. It's not about OS portability, it's

about providing a common interface to a service

offered in many different forms.

 - 3 pts Used not just for new devices, but for

whatever is running in your system. Also used for

some software modules, like file systems.

 - 5 pts Backward compatibility is provided by a

federation framework, but that isn't the point. It

provides a uniform interface to many different, but

similar things providing a type of service.

 - 7 pts Used to provide a uniform interface to many

different, but similar things providing a type of

service.

 - 1 pts Your definition not very clear.

✓ - 8 pts A few details are correct, but basically your

answer is vague and misses important points.

 - 0 pts Click here to replace this description.

QUESTION 7

7 TLB and ASIDs 10 / 10

✓ - 0 pts Correct

 - 9 pts Used to identify whose address space it is.

Particularly valuable for context switches.

 - 6 pts The ASID field does indeed indicate the

process identity, but the main reason is to avoid

having to flush the TLB.

 - 1 pts TLBs are not per process. They're shared

hardware.

 - 5 pts Why?

 - 3 pts Why is this useful?

 - 2 pts Why not just flush TLB on context switch?

 - 10 pts No answer here.

QUESTION 8

8 Shared memory IPC 10 / 10

✓ - 0 pts Correct

 - 3 pts Speed is a main advantage

 - 1 pts Only applications that work together to share

memory have access to it.

 - 3 pts Difficulty in synchronization is main

disadvantage.

 - 2 pts Doesn't necessarily save space, since data

to be moved between processes lives somewhere,

often multiple places, in any mechanism.

 - 4 pts Incorrect understanding of when and how

shared memory can be updated.

 - 5 pts No disadvantages discussed.

 - 2 pts Not a high overhead mechanism.

 - 2 pts What kind of cost?

 - 1 pts Actually quite easy to implement in OS.

 - 2 pts Bus is not the issue. Being on the same

machine is.

QUESTION 9

9 Semaphore counts 10 / 10

✓ - 0 pts Correct

 - 4 pts Count should be 3.

 - 1 pts Semaphore operations might put the

requesting thread to sleep, but never another thread.

 - 2 pts The question asked about access to a

resource, not producer/consumer.

 - 1 pts Post operation will wake a waiting thread, if

one exists.

 - 1 pts Only one waiting thread awakened.

 - 2 pts Wait on one doesn't block.

 - 2 pts Wait on 0 blocks.

 - 2 pts This solution might work, but isn't how

semaphore behavior here is defined.

 - 2 pts Wait on zero decrements to -1. Normally

blocks, shouldn't for your solution.

 - 2 pts Post operation increments count.

 - 3 pts Initializing count to 2 will block third

requester.

 - 1 pts Wait and post are typically implemented as

atomic operations, so no concurrency issue on the

post operation.

 - 2 pts Your version of post won't work with your

initialization of count.

 - 4 pts You didn't specify exactly what happens on

the wait operations. Semaphore operations are

highly specific and being vague leads to trouble,

which may be why you set the count to 2 initially.

QUESTION 10

10 Synchronization example 9 / 10

 - 0 pts Correct

 - 1 pts Return in bitMapGet not in critical section.

 - 1 pts for() in bitMapGet not in critical section

 - 3 pts Describes update, but doesn't show how to

do it.

 - 2 pts Critical section in bitMapGet starts when

mask is set.

 - 1 pts Critical section in bitMapFree doesn't include

first two lines.

 - 3 pts No critical section in getblock or freeblock.

Serious overlocking. Lock only in bitMapGet and

bitMapFree.

 - 2 pts Missing critical section in bitMapFree

 - 3 pts You didn't use mutual exclusion on anything.

 - 0 pts Not quite right (think about that continue()),

but close enough.

 - 0 pts Didn't perfectly identify the critical section,

but using an atomic instruction is indeed better here.

 - 1 pts In bitMapGet, need to hold lock until map is

set.

 - 2 pts Are you locking anywhere except in

bitMapGet?

 - 3 pts Missing critical section in bitMapGet

✓ - 1 pts Won't execute the lock release in bitMapGet

if it returns first.

 - 1 pts Need to hold lock in bitMapGet throughout.

 - 0 pts Actually, the critical section in bitMapGet

covers the code between those sections. But you

locked the whole range anyway, so no points off.

 - 2 pts No critical section in getblock.

 - 1 pts Lines in between two marked sections in

bitMapGet also critical.

Page 4

