CS 111 Midterm

TOTAL POINTS

91.5/100

QUESTION 1

1Page replacement algorithm choice 10/10

v - 0 pts Correct

- 10 pts Incorrect/no answer

- 5 pts Incorrect/no explanation of why algorithm
choice matters

- 5 pts Incorrect/no explanation of likely difficulties
upon poor algorithm choice

- 2.5 pts Explanation of why algorithm choice
matters unclear/needs more detail

- 2.5 pts Explanation of poor algorithm choice's

consequences unclear/needs more detail

QUESTION 2

2 Spin lock performance 10/10
v - 0 pts Correct
- 10 pts Incorrect/no answer
- 5 pts Incorrect/no explanation of how spin locks

cause performance problems

- 5 pts Incorrect/no explanation of how a thread can

harm its own performance

- 2.5 pts How spin locks cause performance
problems unclear/needs more detail

- 2.5 pts How a thread can harm itself with spin

locks unclear/needs more detail

QUESTION 3

3 Virtual address translation 10/10
v - 0 pts Correct
- 3 pts Missing one case
- 6 pts Missing two cases
- 1 pts The page table doesn't get full in the sense
of being too full. At most, it contains an entry for
every page.

- 2 pts You never "search" a disk for a page. You

always know exactly where it is.

- 2 pts You don't search page tables for invalid
addresses, since they won't be there.

- 3 pts Third case same as example case.

- 1 pts And what happens in the third case?

- 2 pts If the page is supposed to be somewhere
and can't be found anywhere, that's an OS crash, not
a page fault. This must never happen.

- 3 pts I/O does not occur in the middle of handling
an address translation.

- 1 pts First outcome results in page fault.

- 1 pts MMU cache page table entries, not pages

- 10 pts Diagram does not describe cases.

- 7 pts Imprecise description of situation and actions
for all three cases.

- 2 pts What precisely do you mean by "system will
continue"?

- 1 pts Entire page table isn't cached in MMU.
Individual entries are.

- 1 pts In third case, if page isn't in RAM, you have to
pay to get it from disk. Context switches may result,
but that's not the main activity required.

- 1 pts How does the system "add a page to the
frame"?

- 10 pts You did not answer the question

-1 pts In case 3, cache what in the PTE?

- 2 pts You don't make an invalid page valid by
simply allocating a page frame.

- 3 pts MMU must not allow one process to access
another process' pages, regardless of their address.

- 3 pts TLB doesn't cache actual pages.

- 2 pts What is the consequence of case 27

-1 pts If a page is on disk, it will not have an entry in
the TLB.

- 6 pts Cases 2 and 3 are not requests to translate

an address.



- 3 pts Dirty bit is only relevant for page
replacement, not address translation.

- 3 pts We don't move an invalid page into a
process' working set because it issued an address in
the page.

- 1 pts Page on disk is listed in page table, just with
present bit not set.

- 2 pts If page is not in a RAM page frame, it's on
secondary storage and access will be very slow.

- 2 pts Valid bit and present bit have different
meanings.

- 2 pts In first case, must get page off disk into a
page frame

- 3 pts First case won't happen.

- 1 pts More details on first case.

- 3 pts Third case won't happen.

- 4 pts Click here to replace this description.

QUESTION 4
4 Results of fork 9/10
- 0 pts Correct

- 2 pts Does not mention pid difference/ return code

- 5 pts Unclear about differences between parent
and child

- 10 pts Completely wrong

- 3 pts Insufficient explanation
v -1 pts Does not mention utility of return code/ pid

in differentiating between parent and child

- 1 pts fork() call in child returns O not 1 or something

else

- 10 pts No answer

- 4 pts Does not provide any explanation for why
stated difference is useful

- 2 pts Copy-on-write, not always

- 2 pts Child does not have a PID of zero, that is the

return value from fork()

- 0 pts correct

QUESTION 5

5 Scheduling for turnaround time 5/10
- 0 pts Correct

- 10 pts No answer

v - 5 pts RR does not finish short jobs quickly, thus
does not optimize average turnaround time.

- 5 pts Non-preemptive algorithms allow long job to
keep new short jobs waiting.

- 5 pts Did not specify which algorithm to use.

- 2 pts SJF or STCF? Which?

- 3 pts STCF over SJF, due to preemption issue.

- 5 pts FIFO chooses early arrivers over short jobs,
harming average turnaround time. One long job
could kill your average.

+ 4 pts Preemption is indeed necessary

- 8 pts This approach does not consider that
running short jobs first reduces average turnaround
time.

- 4 pts Earliest deadline first only applies to RT
scheduling.

- 3 pts STCF will do better, if one has a good
estimate of job run time.

+ 2 pts Good explanation.

- 8 pts Not clear what algorithm you mean. Poor
explanation of why to use it.

- 4 pts Insufficient explanation.

- 4 pts Without knowledge of job run times, MLFQ
will probably do better than your choice.

+ 2 pts Mentioned SJF, but did not favor over other
incorrect choices.

- 3 pts Preemptive or not?

QUESTION 6
6 Changing page size 10/10

v - 0 pts Correct

- 3 pts No external fragmentation with either page
size.

- 1 pts More details on internal fragmentation effect.

- 3 pts Less internal fragmentation, not more, none,
or the same.

- 2 pts More details on non-fragmentation effect

- 3 pts No discussion of external fragmentation

- 4 pts No discussion of another effect

-1 pts As long as the pages are in RAM, the speed
of access won't be much different.

- 4 pts This effect will not occur.



- 4 pts Page size does not really affect allocation
requests.

- 3 pts With paging, need not use method like
best/worst fit.

- 4 pts Thrashing is not directly related to page size.
It is based on actual memory use.

- 3 pts Non-contiguous allocations across page
frames already happens with 4K pages.

- 1 pts More details on external fragmentation effect.

QUESTION 7

7 Flow control and shared memory 7.5/ 10

- 0 pts Correct

- 5 pts Flow control for sockets not
explained/incorrect

- 5 pts Absence of flow control for shared memory
not explained/incorrect
v - 2.5 pts Flow control for sockets unclear

- 2.5 pts Absence of flow control for shared memory
unclear

- 10 pts Incorrect

- 1 pts Sockets aren't unidirectional

- 1 pts Sockets don't imply 2 machines

QUESTION 8

8 ABls and software distribution 10/ 10

v - 0 pts Correct

- 3 pts Does not mention that ABIs specify how an
application binary must interact with a particular OS
running on a particular ISA

- 3 pts Does not mention the need for fewer
versions of code / If OS is made compliant then code
compiled to an ABI will run on any compliant system

- 5 pts Unclear about what an ABl is

- 2 pts Does not mention lack of requirement for
user compilation

- 3 pts Unclear answer

- 2 pts Needs more detail

- 10 pts Wrong

QUESTION 9
9 Relocating partitions 10/ 10

Page 3

v - 0 pts Correct

- 1 pts More generally, virtualization (both
segmentation and paging) allows relocation.

- 8 pts Virtualization is the key to relocation.

- 7 pts Swapping alone won't do it. You need
virtualization of addresses.

- 10 pts Totally wrong. Virtualization is the
technique.

- 4 pts Insufficient explanation.

- 10 pts No answer.

- 2 pts Insufficient explanation

- 2 pts TLB is just a cache. General answer is
virtualization.

- 0 pts Not really called "address space identifiers,"
but the concept is right

- 3 pts this is virtualization, not swapping.

- 4 pts Other way around. To relocate, you change
the physical address, not the virtual address.

- 7 pts Incorrect explanation of the aspect of

virtualization that allows relocation.

QUESTION 10

10 Semaphore bug 10/10

v - 0 pts Correct

- 10 pts Incorrect

- 0 pts Balance checked against withdrawal before
obtaining semaphore: balance could decrease
between check and lock if unspecified code contains
decrement to balance

- 0 pts Balance checked against withdrawal before
obtaining semaphore: balance could decrease
between check and lock if concurrent run of thread 2

- 5 pts Balance checked against withdrawal before
obtaining semaphore: incomplete assumptions

- 10 pts Assumed bug in unspecified code

- 1 pts semaphore should be initialized with 3

- 3 pts b = b+a not being atomic is irrelevant here
and cannot cause a bug

- 2 pts Another strange part[...] <- That comment is

incorrect



Midterm Exam
CS 111, Principles of Operating Systems
| Fall 2018

onc: [

Student ID Number: |

This is a closed book, closed note test. Answer all questions.

Each question should be answered in 2-5 sentences. DO NOT simply write everything
you remember about the topic of the question. Answer the question that was asked.
Extraneous information not related to the answer to the question will not improve your
grade and may make it difficult to determine if the pertinent part of your answer is
correct. Confine your answers to the space directly below each question. Only text in
this space will be graded. No question requires a longer answer than the space provided.



1. Why is proper choice of a page replacement algorithm critical to the success of an
operating system that uses virtual memory techniques? What is the likely difficulty if a
poor choice of this algorithm is made by the OS designer?

we necd W e o god Pode  rplucen) Bleyoribim P pedues bre

namber o TED mivges sl Plge fvls, o3 QRSN Cerond i, ek

S 3 » . t
w Gule Sloud -, 14 6  pPoo~ Chaoiet ' e, ; %ﬁ ke wn {70@»~mu£. LAt
. : . ¢ " Uk
E“}EL f}jw{j&« begy (.;;{!: 2. 14l =) W rete S 505 é{) el Crutq By f:‘:(, V(,b‘(? P e }'w!/w, Uit W)
! t .

L. wuto from s e wont loge o lov & .f?lizf"é’gﬁwf\@ hentll

L#4 o

7 &
{Gnel. Wt ,@?ﬁ; b

é?@igg g"lﬁ??;@ 3

2. Spin locks can cause performance problems if not used carefully. Why? In some
cases, a thread using a spin lock can actually harm its own performance. Why?

S‘P?”\ Weas Lo hoeh Co C:(»«?t;i@,‘f‘ S sy

perfmont  becow w %""M«,z burn, ,

i %U»q deAl ﬂ,&ﬁ%w\; bre i\gmﬁ; eibiu-epg q’;f\f_ Weikas prcesies | Thie Con hernm h\e Hheeeudd s QU

H 5 e d ot i § & 1i
{}p s e b2 &L Ly, o Bynd gl &E{;iwu M{{({ éﬁf&g 1;,\& redeas £ e %j%(

¢ z e{ilgt’r\sr P : ) é s
g&}ﬁaé& af‘,,ffj iatint f') gif’? ?fé@%i”?%’ﬂ 1Y L\Vlﬁ,ﬂ‘g k@f@?{f "ﬂ&m’ :? GRS . %ﬁwy 356 Y

¢

g%f: 5{ :,‘f\‘z'% %‘{f& LW

@

st » . {' N ¥
YOS ' ML) e 3 i
U/wc” @%j ) $ o Petierable aﬁ: fra Yomang 1) EE, Sherk . é,m
A
T

" ,
(\3 G o Yol Y %‘U (o e bed el SO0, k,ué

[

0. beeced N fAgbeer proeesce”



3. Assume you are running on a virtual memory system that uses both segmentation

and demand paging. When a process issues a request to access the memory word at

address X, one possible outcome in terms of how the address is translated and the content

of the address is made available is: the address is valid, the page is in a RAM page frame,

and the MMU caches the page table entry for X, resulting in fast access to the word.

Describe three other possible outcomes of the attempt to translate this address and the

actions the system performs in those cases. '

e ;k:séif\gw AN Two -

» ]
F g - 3 A s 3 " | T ) ; R fy t ¢, L1
@) i P oetoh e st t2 Vedvd {vanet ol =1 \) b husasloba 15 nel

. A i ’ e o 5 : i 4 s ,\éﬁif’f* .
L Ple-puge S RAM? ;e hove W Wk e Py hsle. et e frd  ne Annslobon

Theny  we !gr'\% b hrimg, (UL(/,\_ inlo TS enel ﬁikﬂ«@‘ b, ms bt lan E%M‘;,, ,f'ﬂ_ o)Lt {

w8
G

P %

i
4 S f ; H [P e } 55 fan fforsbie b bsag
e oy leawalld el se e pe Cuehe  BAS S Flusiv “

B P | W F
,.,\zLu\c]uJ mShovekion ) ) han b Gk Wl Fheo e @xeaphor gt be Fhe

[
r a | -
ua i Nﬁg’f) e, el odtrnsh:
@ i elinb \

5) F B address b s vald, baaslde nok o TE3, 0 Dage nge i RbA. e MO

T g:r,! WSt been ohieels 1 c}/g koo el  See. g;;%«%w ﬁ@f{ Poje vande iy poam. we msh  krea %

&*
1, 1 £ i ’ 3 Y e oy 8
ko %Mw\ Do TSNUe b gy b 9 nw o, Ther, we  rery
} ' 5o :
%\?éf @ S elan j PG e 1{*’3&«3&’«> brg, Loenban AR TS peyes g ijm\/\{:;.j Whoale LD,

4 When a Linux process executes a fork() call, a second process is created that’s
nearly identical. In what way is the new process different? Why is that difference
useful?

Tre (Ve sy Shoes e code %ﬂ( pnl NIV (VR @“f'%‘?! e ;o /b

hus Ve Oum process T8 o gl

1V gj% g’ﬁ“&,g %){wki é’”%\&, —,fié@rs{ ég

@97’“@&@@‘ 4 el el Grente )’0 }'b i =
’ e ” w5 33 e Sgamg, Shu i<, 08 Mf em Cmllg

el e o, B ;"tx N 4
wekd b masscel - The v alloeg e Permaie 4 refererce Ve

L ob do  hmens Wik weik B 9 kerwenobke .

&
T et o refemcnces b Skme  doy Seqments i batay, Hososer , (F

i

f.:?xfm&‘ e = ’
LA Lot s Vs ] : . 3 )
Re5 rites g dae, e | Orher reef)s bra. ori jmui while

3
& H Ry 3
EVIRE O I S S fajet gg, LI Cooq

[ ol Al
Theoe tllbennces [y be [ACEe P Prraat s bo ran feche guw.@,umff {gw,,
hre parenk wbily, € hiadzens BENR-TO VIR ¢ V¥ NP gt A WL )

(LAY (et 96,



5. If your OS scheduler’s goal is to minimize average turnaround time, what kind of
scheduling algorithm are you likely to run? Why?

CY

(r e h\ lo M e ’fi‘wfﬁ g“e,ff‘w&w.ﬁ I O i shodd” e
/

&

Stane Feo Vo G R . : C
) FLhi ol i?} Clinen Coelm g’;}{u&?g %@,.,A}. é@ Efg,'e?‘u,bét‘

%

. oy 1
el Avlg, N sf‘m, P SR Gt Yore s

Le wwing provases 1S bongars . bae

fleik b, S\l huns Where  mng ‘W”j = CunAn pryecs S L Iy ﬁmm«u( s MO

{ N
L furnGeund  bime ok eleny g Wafens ’em:} m ol @ {/%f n
: : e ok -

6. Assume you start with an operating system performing paged memory allocation
with a page size of 4K. What will the effects of switching to a page size of 1K be on

external and internal fragmentation? Describe one other non—fragmentatlon effect of this
change and why it occurs.

o f
18 ue  Swiheh  fom YA VA peges,  ialoma ﬁ*wa( el il "
gclveed o ' :
& 5 e Cen (37 3% »\,/‘\ {;LL,\} £5 b 4 &;f\.ﬂlf’ {%..‘fz,\}}{g_f.ﬁ.k" Q" EV&S}U\MA
oo preess aslhs Lo S B om el mbohe e gundd

bdr ww e s prowele é.%@*ﬂ"’? s (¢ pe d/.gi; i

g

Thawt, et ¢ et er
85, L et
Lo RO Laldedde gn | imnz sl bece he (71»’1?0%
/

p&%ﬁ% 15 W eedwe @Mﬁﬁmx

o H beoen | ok

i M@L«L{.ﬂ t {3€ [JE=V R WAL, DA, QM{.‘L‘_? [i{, gt A % 73
sf) ouads ' 5»‘*@,&4«.1%/\1 a/\’m ALy g‘,} “e ol kel X
[ oA g Swal| pausoble Coistonenils
i %

a3 TATIEN ﬁ&*§ﬁ,% u. : §

%‘ 3 M%{j (AN } 1Y B §
S W AR TIPS £tk w@v\jﬁé g, Q@M{> : éy.;,ﬁ' sa x-g"gﬂgﬁ,@b AL Y E»me, gx;(vg,},,,f; hable ;

veSulbany (N Slome pelimene WM o TLB s A0 f ke TLp

o5 5 ; ROTHER '
‘p{{ BALS /\f;, ExY %Mw g‘ B e Wi Afpne, ﬁ“%’w"*’z (IR T C PR s e G oh }\.(J(«(Q ?’ Fle

& ’ ’

Weglubns B Y Sl gmoutt d Pemony,
i
5

T /
ik s, e IRV ¥ (e~ Y %’3 b nagmg br

provck S (Tpayvs



7. An operating system can provide flow control on an IPC mechanism like sockets,
but cannot provide flow control on an IPC mechanism like shared memory. Why?

wpn i) . 7 o . . . )
{ha. RUsS Yirow ehes QQ"%’E‘*’WX ne g@ﬁ? ¢ bk T ladl e, b Asang v Ay e
{
Cip T ST 7 A | . . . U X .
by errd , wadd éi“é’g el ok el welr 2% S¥perincg ) M?iiﬁ U Q g l@big’“ff“ff -

.
. bwnyy Dk “hye
o he O Can 69 Py it ;img acw@‘{:) e Séee s

whisn e Solles S
Qui, o Avan ol "‘M%M{fﬁ/ ehe. o grevet b

o Peerrer Lo %}&i&j ovesmlitmed -

” &3 { ; .
7 L9} e te WA AR L 2 al . g
b 7 Y Glng Wi &Q«@,&,»Ws g;iz«i«} me 10 85 925 c‘i‘ﬁ{" iy LB,
: ; P s d :
3 iy . (? $ 3 & f i
ck gmz_v\ﬂ{f b %x.uwxfmi s s, b, Thas 15 UBedd L {@gé« PO SR
: 7
Com PO TR 07 e Prywess 22

bremmechiss haward o  Covalrete
s }N‘,\,\J bo g-»u,w\ [ W g, CJ ke, gv i

rec.

Ceon ‘;,‘«(’/‘*';‘Ol\s %

Fhe 0% IRES rd  Corteot P b s .4‘:;/'"/"’1 ofe

8. Why are application binary interfaces of particular importance for successful
software distribution?

N ’;’5"”‘42 T ot e { e
ABS = e ol kecore TE map & oot ppr

. < %
b & speecte e, Tho$ he  end wer  cloestt Acced
> TR

i “ / eleran 7{;’@;{’! ‘o
\m Cim«u’)ﬁi le, bre LMk Cerele shen F ‘}W[ @Vv{ /

" . pides &/‘é;«sf"“ﬂ"*i/%’vg
ﬁ@ﬂ“mjwﬁm T v 1% valt e

£,
% £1. (A
Cowpuiple W'

: i 14 e b
. Al ¢ e el et . Ak ik
o horaweee  Gonk | rSline g TR OPRE

Ve relnl ok inberfzees o~ Cs{if’*”ff‘“w

i, f:‘ﬁ&’i L% “,

}’"{’ k RT. s el on 9%

elosiry st Fv g\%aﬁiv{ roels 'C"f Pt }}M{’f? e pgAuting ay | M\j e
«é“swg dohere b b Inbotice, s, LMVE

| AL 5
Con Y o CAE v%ﬂ;{u s hy

bae o ‘ .
ML gl 0% versions,



9. Which memory management technique allows us to solve the problem of
relocating memory partitions? How does it achieve this solution?

L iy -
vf?;" % %

‘ Ao s ) . bl
s E?’vuf\&é}-‘»&'t ﬁ\j‘«@):} il Warad 3 ailous B v
Guw ke DM & rlocpten. We M %m\wm btrse.

, i L3
Y“e%\i:@w’; el ‘LM(MML Wik m@(\@iuﬂ b (‘umwpml w

/ @@aé' te ;:‘\é,.@«z.;i")’ &,
r ! C eHERR ¢ ) 1
2) e, Sl 7 oy mgﬂg{ . @;ng& S, %Js?f z;%{ Aok Wiag 4

e edng e b AR AL Ay b
St T were ik Oy pelocadng mese o W

< Q’ég Readboboa, E‘z"v 3 W, %‘@’u;‘,ﬁ\g L) I~ “ g}fj} Whee ol s Groreel
g % oy 1 Bad » \ME
i Y, Th Ve, ﬁ)px,g W ‘“’j. (rf/’ig' acatents k Wil Fang AN “"M@

‘ . Con /V o
\/: \ E C wwvww(\ QM/\ l" g I") LS S ) (7¥ 8 )
TECE Pwsren adanss O

\ : ) P4 N i .
ek Ev‘w v s ? ﬂs"md ! Mg:mg greets e WAy }y@
. b = £ i
e i EE{MD b ol I %3 1% Leme ¥ Geeess b,
]
Pryeed  weslon B,

W Ll Q“"’“’( celocele ey ipﬁf(sfw"

y & gty plaes e i by %‘wmgm? chonggre e Gelments
o ( ‘ E - /

&
A S ; ' TALCE
hyase. reqishess - Te proweg 0 WP e pv
& d £ - ‘r'
| . . )
M . [Py
& ; . o Dk o€ o1
(AT | 3 Mg PP e Rdabed ke a Y
i (] i

1

“W%ﬂ' i% @?,c% ; Ms}gh{@j bre

?@M by et SRACE,
'



10.  The following multithreaded C code contains a synchronization bug. Where is it?
What is the effect of this bug on execution? This is not a full program, but only a part of
a program concerning some synchronization functionality. The fact that it’s not a full
program ISNT the bug. I am looking here for a synchronization bug. If you find and
specify some other bug that does not have synchronization issues, you will not get any
credit.

sem 't balance lock semaphore;
int balance = 100;

... /* Unspecified code here */

sem_init(&balance_lock semaphore,0/0); /* Initialize the balance semaphore

]
char add_balance(amount) { - e web b 2 o

sem_wait (&balance_lock_semaphore ); /* wait to obtain lock on balance
variable */

balance = balance + amount; |, cw Wulse
sem_post(&balance lock_semaphore); /* Release lock after updating
balance */

}

void subtract_balance( amount ) {
balance = balance — amount;

}

... /* More un'speciﬁed code here */
/* This code is run by thread 1. */
add_balance (deposit);

- .. /* More unspecified code here */
/* This code is run by thread 2.*/

if (balance >= withdrawal) {
sem_wait(&balance lock semaphore); /* wait to obtain lock on balance
variable */
subtract_balance (withdrawal);
sem_post(&balance lock semaphore);

}

/* More unspecified code */



CHUAN Cogll, 30406 M

10) X'Nw SemuPhoe b (mbbzedd pepati S b Gtd )
: Vo % L5 ‘WC",’f/%f/{ iﬂ\;
e we oo B tucia Lk's %W'( bomescd ) pms
> & PA. y ’ i aded — beye, Gt
L. A

l?,%{ Yool s S .o, -
, Som . witt Aeerencets | Sremerphae - '
, e 1% 3’0‘ / M Fm"%’" 2{%{;{,{ g:

%@;‘ g{&y? fow a7 ans ’ s b Z%M; s Lom o k¥, 1F
tlparererte Mo SOMUDMAE W =T L e SleyOs T g, ?90»1\ borcedds o
Odacp el refthom  wll e foe  obrem up- T dune  Sibvalen GO

N Q‘h‘\i E\EN‘:{R;,/’* LSS SR P 1. Ame éza.f,u,, {}y\ Rt ;s

54 ‘ 2 bl A b
4 b v el bl meth e %’M“?%w Yo %; %N" Licsh  bvedd vt Céui

A7

.1

L g = sa’vwiﬁi

W Lot i b ; ; . Coeiias

}& LoD, Yol »%9 [ £ (}é{é - gj@_ ‘1&? Wt i) fare W b £Aak

f;; A ﬁ‘i’“{,),

{ Vs 3 £ - J i ¢ a‘f‘? . 'y

oy owond Qegrentrt e geaggre W wh O by

(. . i . ralen v
ot (e ‘%"‘WWM ) enkel @j&/‘(j\&&,u e e om . DU P :

o “ vrplore ks sporalun O P P

Yre WA e W Ay b Obaar  bhecud.


http://www.tcpdf.org

