
CS 111 Midterm Exam
Nate Nateerawut Sookwongse

TOTAL POINTS

91 / 100

QUESTION 1

1 Pages and page frames 10 / 10

✓ - 0 Correct

 - 10 No answer.

 - 2 Did not explain that pages get placed into page

frame.

 - 1 Said page is mapped to page frame

 - 1 No mention of location of page & page frame in

system

 - 4 Incorrect Reasoning

 - 3 Not accurate enough

 - 1 No mention of virtual address

 - 5 Page frame contains exactly one page.

 - 2 Did not mention that page and page frame are

the same size.

QUESTION 2

2 ABIs 10 / 10

✓ - 0 Correct

 - 10 No answer

 - 1 Did not mention operating system

 - 4 Said applications don't need to worry about

hardware differences

 - 2 Off-topic

 - 3 Incorrect reasoning

 - 2 Did not mention software distribution

 - 3 Did not mention hardware and OS

 - 2 Left out hardware

QUESTION 3

3 Information hiding 7 / 10

 - 0 Correct

 - 10 No answer.

 - 6 Primary benefit is to avoid bugs arising from

improper dependencies among modules.

✓ - 3 Major element of benefit is that it allows

changes in module implementation.

 - 7 Really about hiding details of OS modules'

implementation, not about concealing processes'

address spaces from each other.

 - 2 Nothing to do with open vs. closed source.

 - 9 Primarily an issue involving abstraction.

QUESTION 4

4 Context switches 7 / 10

 - 0 Correct

 - 2 Not mentioning general registers

 - 2 Not mentioning PC

✓ - 2 Not mentioning Stack ptr

✓ - 1 Not mentioning PSW

 - 2 No discussion of memory mapping data

 - 2 No need to explicitly save data, since it's

already sitting in memory.

 - 3 Generally nothing goes to disk on a context

switch.

 - 1 What about memory needs to be saved?

 - 2 Much of this stuff need not be saved, since it's

already in memory. OS just needs to be sure it can

be found again when process is switched back in.

 - 2 The PCB is an OS data structure that exists as

long as the process is around, so it need not be

saved on a context switch.

 - 1 File size has nothing to do with a context switch.

 - 1 I have no idea what the flag you're talking about

is.

 - 1 "state of the process" is vague.

 - 2 Caches aren't saved.

 - 2 No need to update a file descriptor during a

context switch.

QUESTION 5

5 Trap tables 10 / 10

✓ - 0 Correct

 - 10 No answer

 - 3 Answer incomplete, should mention trap table is

used to specify what code to run when trap occurs.

 - 8 Wrong answer.

 - 3 Answer incomplete.

 - 2 User process has no thing to do with trap?

QUESTION 6

6 Race conditions 10 / 10

✓ - 0 Correct

 - 10 No answer

 - 5 Answer incomplete.

 - 8 Answer incorrect.

 - 2 Missing some details.

QUESTION 7

7 Blocking and threads 10 / 10

✓ - 0 Correct

 - 10 No answer or Wrong anwser

 - 5 Missing: User-mode threads block other threads

of the same process.

 - 5 Missing: Kernel-mode threads do not block

other threads of the same process, as other threads

can be scheduled to run on the same or another core.

QUESTION 8

8 STCF 10 / 10

✓ - 0 Correct

 - 10 No answer or Wrong answer

 - 5 Missing: interrupt the running one OR switch to

the newly-added shorter ones.

QUESTION 9

9 Fork and exec 7 / 10

 - 0 Correct

 - 10 No answer

 - 4 Not mentioning code replacement.

 - 3 Not mentioning stack replacement.

✓ - 3 Not mentioning heap replacement.

 - 9 The question was about what happens after the

exec, not the fork.

 - 8 What resources are replaced by the exec?

 - 7 Stack and code are changed by exec.

 - 5 Fork/exec work with processes, not threads.

 - 2 Even any data written after fork gets replaced

by exec.

 - 2 The old stack is totally overwritten.

 - 10 Totally wrong. Nothing to do with

multithreading and multicore.

 - 6 So, what resources are replaced?

QUESTION 10

10 Fragmentation for memory management
schemes 10 / 10

✓ - 0 Correct

 - 10 No answer

 - 5 Not identifying internal fragmentation for pages.

 - 5 Paged segments suffer 1/2 page fragmentation.

 - 5 Fixed segments suffer 1/2 internal segment

fragmentation.

 - 3 On average 50%

 - 2 The 1.5% was a particular example. It will be 1/2

page, on average.

 - 2 Internal fragmentation has little to do with how

long the system runs, unlike external.

 - 2 Paging and fixed size partitions never

experience external fragmentation.

 - 2 The paging form of fragmentation you describe

is internal fragmentation.

 - 2 Paging doesn't use binary buddy. It allocates in

fixed size pages.

 - 4 Fixed segments are likely to waste more

memory on internal fragmentation than paging, not

less.

 - 3 No external fragmentation with paging.

 - 5 No answer on segmented system.

 - 2 Calling internal fragmentation "external".

 - 1 This form of fragmentation is called "internal."

 - 4 Paged segment fragmentation only occurs in

the last page.

Page 2

