
CS 111 Final exam
Jeffrey Hsinping Xu

TOTAL POINTS

100 / 100

QUESTION 1

1 Question 1 50 / 50

✓ - 0 pts Correct

 - 5 pts Need more discussion of reliability issues.

 - 3 pts Sequential write not particularly expensive

for flash. Cheaper than random writes, since random

locations likely to require erase first.

 - 3 pts Not necessary/helpful to virtualize BB DRAM,

especially if using a log.

 - 5 pts How will system/application/user determine

which files go where?

 - 2 pts How will you handle one device becoming

full while the other still has space?

 - 5 pts No discussion of metadata issues.

 - 25 pts You didn't design a file system for battery

backed DRAM. You used it to hold process data,

which is NOT what I asked for.

 - 15 pts No discussion of how flash file system

would work.

 - 5 pts With proper implementation, computer crash

need not affect battery backed DRAM.

 - 5 pts Flash storage is slower than DRAM, battery

backed or not.

 - 5 pts Using battery backed DRAM purely as a

sanity check for flash is a tremendous waste of its

possibilities.

 - 3 pts Random writes are bad for flash, unless to an

unused location.

 - 10 pts Which is it, one file system implementation

for two separate devices or using the BBDRAM as a

cache for the flash (which implies a unified file

system)?

 - 2 pts Can handle circular log overwriting issue by

keeping track of head and performing garbage

collection.

 - 2 pts Different block sizes will lead to complexities

in the block I/O cache.

 - 25 pts Incomplete answer.

 - 7 pts Inconsistent discussion, contradictory in

places. Poor performance choice of what to store

where. Why use fast DRAM to store infrequently read

files? DRAM is also good for frequently written files,

while flash is good for infrequently written files.

 - 15 pts How will you make good use of the

particular characteristics of each device?

 - 5 pts Are the mechanics of using metadata to

build and access files going to be the same for both

devices? Why or why not?

 - 20 pts Lacking details of how the implementation

would actually work.

 - 7 pts BB DRAM is much quicker than flash and

perfectly happy with random writes, which flash isn't.

How can those characteristics be profitably used?

 - 40 pts DOS FAT is a terrible choice. Not well

suited to the characteristics of either device, imposes

many artificial and unnecessary limitations, doesn't

support file system options and features easily

supportable by other approaches.

 - 5 pts More details on cache management needed

for this option.

 - 2 pts Not clear that using 1/11 of your storage

capacity for pure caching is a good idea.

 - 2 pts Benefit of providing virtual address space for

files in DRAM not clear. Adds complexity, for what

benefit? Why not just use pages?

 - 2 pts Need more details on automated methods of

moving files into/out of flash.

 - 5 pts DRAM has no seek time, so creating cylinder

groups is unnecessary.

 - 10 pts Insufficient discussion of how to handle

flash memory issues, like single write and erase

cycles.

 - 10 pts Flash memory holds data persistently

without power. If it didn't, storing checksums would

not help one bit, since they would be lost, too.

 - 8 pts Insufficient details of how DRAM file system

works.

 - 3 pts Needs more discussion of how DRAM

caching is organized.

 - 3 pts Unless you fiddle with hardware architecture,

BB DRAM can't be used as regular DRAM. It's a

device, not word addressable.

 - 8 pts EXt3/4 poorly suited for flash, due to single

write/slow erase issues.

 - 10 pts Unless file system specially designed to use

it as cache, BBDRAM won't help with caching. It's a

device, not main memory. You don't discuss how

reads and writes would be sent through BBDRAM

first.

 - 10 pts This design will direct most reads to slower

flash.

 - 5 pts Desirable to have frequently read data in

DRAM. Not clear how your design achieves that

(other than metadata and directories).

 - 15 pts This use of BBDRAM does not provide

much advantage of its good characteristics, such as

faster read/write performance and write-in-place.

 - 10 pts Not clear how you are leveraging relative

advantages of each device.

 - 20 pts No discussion of flash implementation.

 - 0 pts Unclear on

QUESTION 2

2 Question 2 50 / 50

✓ - 0 pts Correct

 - 5 pts There are differences between scheduling

cloud resources and all processes on a multicore

system. How do those figure in?

 - 10 pts How are bids calculated?

 - 5 pts No discussion of kernel thread scheduling.

 - 5 pts No discussion of real time scheduling.

 - 3 pts No comparison to round robin.

 - 3 pts No comparison to priority scheduling.

 - 3 pts Just setting the bid to highest number of

credits limits the flexibility of the approach, which is

its main attraction.

 - 2 pts If you only get more credits when lower

priority process blocks you, low priority processes

could starve. Discussion of this is inconsistent.

 - 3 pts Kernel itself is not threaded. Kernel threads

are process threads known about and scheduled by

the kernel, as opposed to user level threads.

 - 2 pts More details on real time comparison.

 - 3 pts Can processes ever get more credits? If so,

how? If not, what happens when a process uses up

all its initial credits?

 - 5 pts Why is set of memory pages allocated to a

process relevant to bids?

 - 5 pts What do you mean by "put in the process

queue which can minimize average waiting time and

maximize throughput?" Which queue is that? How is

it determined?

 - 3 pts Kernel threads are not required for this idea.

How to support them if you have them?

 - 10 pts How are credits assigned to processes?

 - 3 pts Fairness issues?

 - 5 pts More details on mechanics of making bids.

 - 2 pts Not desirable to gain advantage by adding

threads to your process.

 - 3 pts More details on assigning credits, such as

how to deal with priorities and fairness.

 - 5 pts Can't work if processes are given fixed

credits at start and never get more.

 - 2 pts Do threads get separate allocation of credits

or share the owning process' credits?

 - 2 pts Your proposed method of adding credits

should prevent starvation, though not necessarily

guarantee fairness.

 - 2 pts Issue of gaming the credit assignment

procedure.

 - 1 pts More details on priority scheduling

comparison.

 - 1 pts No comparison to hard real time.

 - 2 pts Why should owning process provide bids for

its kernel level threads?

 - 2 pts Method of assigning/adjusting credits not

clearly described.

 - 1 pts Probably better to keep credits/bids in PCB

rather than stack, since stack can get overwritten in

some cases. Also, PCBs more readily accessible than

stacks.

 - 1 pts No comparison to soft real time.

Page 3

