CS 111 Final exam

Jeffrey Hsinping Xu

TOTAL POINTS

100/100

QUESTION 1

1Question 150/50
v - 0 pts Correct

- 5 pts Need more discussion of reliability issues.

- 3 pts Sequential write not particularly expensive
for flash. Cheaper than random writes, since random
locations likely to require erase first.

- 3 pts Not necessary/helpful to virtualize BB DRAM,
especially if using a log.

- 5 pts How will system/application/user determine
which files go where?

- 2 pts How will you handle one device becoming
full while the other still has space?

- 5 pts No discussion of metadata issues.

- 25 pts You didn't design a file system for battery
backed DRAM. You used it to hold process data,
which is NOT what | asked for.

- 15 pts No discussion of how flash file system
would work.

- 5 pts With proper implementation, computer crash
need not affect battery backed DRAM.

- 5 pts Flash storage is slower than DRAM, battery
backed or not.

- 5 pts Using battery backed DRAM purely as a
sanity check for flash is a tremendous waste of its
possibilities.

- 3 pts Random writes are bad for flash, unless to an
unused location.

- 10 pts Which is it, one file system implementation
for two separate devices or using the BBDRAM as a
cache for the flash (which implies a unified file
system)?

- 2 pts Can handle circular log overwriting issue by
keeping track of head and performing garbage

collection.

- 2 pts Different block sizes will lead to complexities
in the block I/0O cache.

- 25 pts Incomplete answer.

- 7 pts Inconsistent discussion, contradictory in
places. Poor performance choice of what to store
where. Why use fast DRAM to store infrequently read
files? DRAM is also good for frequently written files,
while flash is good for infrequently written files.

- 15 pts How will you make good use of the
particular characteristics of each device?

- 5 pts Are the mechanics of using metadata to
build and access files going to be the same for both
devices? Why or why not?

- 20 pts Lacking details of how the implementation
would actually work.

- 7 pts BB DRAM is much quicker than flash and
perfectly happy with random writes, which flash isn't.
How can those characteristics be profitably used?

- 40 pts DOS FAT is a terrible choice. Not well
suited to the characteristics of either device, imposes
many artificial and unnecessary limitations, doesn't
support file system options and features easily
supportable by other approaches.

- 5 pts More details on cache management needed
for this option.

- 2 pts Not clear that using 1/11 of your storage
capacity for pure caching is a good idea.

- 2 pts Benefit of providing virtual address space for
files in DRAM not clear. Adds complexity, for what
benefit? Why not just use pages?

- 2 pts Need more details on automated methods of
moving files into/out of flash.

- 5 pts DRAM has no seek time, so creating cylinder
groups is unnecessary.

- 10 pts Insufficient discussion of how to handle

flash memory issues, like single write and erase

cycles.

- 10 pts Flash memory holds data persistently
without power. Ifit didn't, storing checksums would
not help one bit, since they would be lost, too.

- 8 pts Insufficient details of how DRAM file system
works.

- 3 pts Needs more discussion of how DRAM
caching is organized.

- 3 pts Unless you fiddle with hardware architecture,
BB DRAM can't be used as regular DRAM. lt's a
device, not word addressable.

- 8 pts EXt3/4 poorly suited for flash, due to single
write/slow erase issues.

- 10 pts Unless file system specially designed to use
it as cache, BBDRAM won't help with caching. It's a
device, not main memory. You don't discuss how
reads and writes would be sent through BEDRAM
first.

- 10 pts This design will direct most reads to slower
flash.

- 5 pts Desirable to have frequently read data in
DRAM. Not clear how your design achieves that
(other than metadata and directories).

- 15 pts This use of BBDRAM does not provide
much advantage of its good characteristics, such as
faster read/write performance and write-in-place.

- 10 pts Not clear how you are leveraging relative
advantages of each device.

- 20 pts No discussion of flash implementation.

- 0 pts Unclear on

QUESTION 2

2 Question 2 50/50
v - 0 pts Correct
- 5 pts There are differences between scheduling
cloud resources and all processes on a multicore
system. How do those figure in?
- 10 pts How are bids calculated?
- 5 pts No discussion of kernel thread scheduling.
- 5 pts No discussion of real time scheduling.
- 3 pts No comparison to round robin.

- 3 pts No comparison to priority scheduling.

- 3 pts Just setting the bid to highest number of
credits limits the flexibility of the approach, which is
its main attraction.

- 2 pts If you only get more credits when lower
priority process blocks you, low priority processes
could starve. Discussion of this is inconsistent.

- 3 pts Kernel itself is not threaded. Kernel threads
are process threads known about and scheduled by
the kernel, as opposed to user level threads.

- 2 pts More details on real time comparison.

- 3 pts Can processes ever get more credits? If so,
how? If not, what happens when a process uses up
all its initial credits?

- 5 pts Why is set of memory pages allocated to a
process relevant to bids?

- 5 pts What do you mean by "put in the process
queue which can minimize average waiting time and
maximize throughput?" Which queue is that? How is
it determined?

- 3 pts Kernel threads are not required for this idea.
How to support them if you have them?

- 10 pts How are credits assigned to processes?

- 3 pts Fairness issues?

- 5 pts More details on mechanics of making bids.

- 2 pts Not desirable to gain advantage by adding
threads to your process.

- 3 pts More details on assigning credits, such as
how to deal with priorities and fairness.

- 5 pts Can't work if processes are given fixed
credits at start and never get more.

- 2 pts Do threads get separate allocation of credits
or share the owning process' credits?

- 2 pts Your proposed method of adding credits
should prevent starvation, though not necessarily
guarantee fairness.

- 2 pts Issue of gaming the credit assignment
procedure.

- 1 pts More details on priority scheduling
comparison.

- 1 pts No comparison to hard real time.

- 2 pts Why should owning process provide bids for

its kernel level threads?

- 2 pts Method of assigning/adjusting credits not
clearly described.

- 1 pts Probably better to keep credits/bids in PCB
rather than stack, since stack can get overwritten in
some cases. Also, PCBs more readily accessible than
stacks.

- 1 pts No comparison to soft real time.

Page 3

F Final Examination
Summer 2017
CS111

Name: j&{gﬁ"r@_y ><w: B o

This is an opéh book, open note test. You may use electronic devices to take the test, but
may not access the network during the test. You have two hours to complete it. Please
remember to put your name on all sheets of your answers.

There are 2 questions on the test, each on a separate page, followed by several blank
pages to hold your answers. You must answer both of them. Each problem is worth 50%
of the total points on the test.

You must answer every part of each problem. Read each question CAREFULLY, make
sure you understand EXACTLY what question is being asked and what type of answer is’
expected, and make sure that your answer clearly and directly responds to the asked
question. If you do not answer part of the question YOU WILL lose points.

I 'am looking for depth of understanding and the ability to solve real problems. I want to
see specific answers. Vague generalities will receive little or no credit (e.g., zero credit
for an answer like “no, due to the relocation problem.”). Superficial answers will not be
sufficient on this exam. ‘

Organize your thoughts before writing out the answer. If the correct part of your answer
is buried under a mountain of words, I may have trouble finding it. Write your answers
on the front of test pages only. Anything written on the back of pages will not be graded.
If the space provided is insufficient for you answer, talk to me. -

1. Consider a system that has a 1 Tbyte flash storage device and 100 Gbytes of
battery-backed DRAM. Battery-backed DRAM is exactly like regular DRAM in
its performance characteristics, but it is attached to its own battery (plus the
general power supply), which guarantees that the memory will retain its state
regardless of reboots, power failures, or other events that would ordinarily cause
DRAM to lose its state. To be perfectly clear, the battery-backed DRAM is a
‘secondary storage device, not the system’s normal DRAM used for the ordinary
purposes of DRAM. Should you design one file system implementation that is
used to support an independent file system on each of these two secondary storage
devices, or should you design a one file system implementation that integrates the
two devices to support a single file system, or should you design two entirely
independent file system implementations, one for each device? Why? Whichever
answer you choose, describe the key design characteristics of the file system(s)
you would build and explain how those choices fit into your rationale for your
choice. Consider all issues that we discussed as important in file system design.

w &ﬁ%f

— PR - YNV E *5'553

b +o be é@m on i

”fri»"’ré

T ISSkes Oown N’“sﬂ“@f‘ ,a*g/‘*f@«‘\ A¥

r%’ Mm A

i

AV

2

L PR

e Sole

W ;;,u

st

#

Ne o1y

\ ~— ""i’::sw:’:‘ wf"i?., 1;4“. b w)ww‘f"t
§ i F s E

Dlieants, ;{" | A y . -y

} / &7 Jé,)mz‘;@ e Over to rine . i Tes

H
i
3

{n

pE
P Su

f
0(3*9@ AV

A

whe "a”"*@@

A_Akx{wr&fﬁ/ -‘%’“@g

.~

ite. wp F}mﬁéﬁ’ S
%“ﬁ m

n

W

e
u:;»' ?’?w &

-

f LONTIVED oh

wi S

gﬂ;nrﬁ LV

- .
gw\ KW\«% narme.s Yo ij&fﬁ,

R AR

z;.,,_qg&%s; ig()iﬂ'%"'/ v {l}iof/gﬁ‘ﬂé{?“g’\ﬁw\a

{1

s

sy

2. You are part of a team working on a new operating system for multicore
processors. One of your colleagues suggests a different model for scheduling, one
based on bidding. Processes will be given credits (or perhaps be sold credits, or
perhaps somehow earn credits — bright new ideas tend towards vagueness). They
can use these credits to bid on processor time at the next scheduling decision. The
highest.bidder spends its credits and gets the processor for either the time it bid
for or for some standard time quantum (again, vagueness in the idea). Either a
process can increase its bid at a later time, possibly pre-empting the previous
winning process, or a process with a winning bid holds the core for the period it
bid for regardless, leaving aside OS interrupts to handle critical system tasks, like
handling interrupts (one more vague point).

Is this a géod idea? How would it work in practice? How would bids be =
calculated and registered by processes? How should kernel level threads play into
this scheduling approach? Do they make their own bids or does the owning =
process bid for them? How would this scheduling method compare to other «
alternatives, such as round robin or priority based scheduling? Would it work 7
well for real time (hard or soft)? Discuss the mentioned areas of vagueness in the
idea, settling on an approach for each.

oy g
H

s,

i

n

} W”s‘?f%"mm;ﬁ;‘ &“‘?va\ﬁr e\ el x}fﬁmgj

wse.,

fmrn
Q.

e f

st

He

WARAGNG Miarn Der

Y

]

.

:
ofe e

3

s
S @

: T

i] F .

7 ﬂ' & 4 f o O % ! “, s o “.“w n N o 5 B L
s \%@m‘“ ARy MEr el H*g; 4, f

£ ﬁ%gﬁ?}{ﬂ‘\ﬁ@ &4

real +ime.

¥
'-‘, " ’3 oy gy &, ’ oy K
¢ Spreqa wer £ ofvpse MMW o § e
B j ~ RACAAY S8

O VAL C A A 1A
TN CHMSeNa O INChwvi g

e

(e ontitne

A m @b eso L

