CS 111 Final exam, short

Nate Nateerawut Sookwongse

TOTAL POINTS

108 /130

QUESTION 1

1sparse files 7/10
- 0 pts Correct
v - 2 pts Did not mention block level allocation detail
for FAT
v -1 pts Did not mention pointers in Unix Systems
- 2 pts Did not demonstrate understanding of FAT
table entries
- 8 pts Did not answer the question

- 3 pts Incorrect understanding of Unix System V

QUESTION 2
2 Links 9710
- 0 pts Correct
v -1 pts Did not go into detail about name storage
and datablocks
- 2 pts Did not talk about link count
- 3 pts Incorrect understanding about metadata

comparison

QUESTION 3

3 Distributed capabilities 10 /10
v - 0 pts Correct
- 3 pts Did not go into detail about network attacks
- 3 pts Did not show understanding of capability
- 2 pts Did not explain lack of challenges in single
machine environment

- 5 pts Did not answer the question

QUESTION 4

4 horizontal scalability 10 /10
v - 0 pts Correct
- 1 pts Missing some details.
- 3 pts Not very accurate.

- 9 pts Wrong.

QUESTION 5
5 Full disk encryption 9/10
- 0 pts Correct
v -1 pts Missing some details.
- 4 pts Not very accurate.
- 7 pts Wrong in explaining attacks.
- 9 pts Wrong.
- 10 pts Empty.

QUESTION 6

6 Addressing in the OS itself 0 /10

- 0 pts Correct
v - 10 pts Physical Addresses

- 5 pts The OS uses the same CPU as user
processes do, and its instructions are passed through
the same MMU as the instructions of those user
processes.

- 5 pts Provide extra wrong answer

- 5 pts The concept is correct, but it doesn't answer

the question directly.

QUESTION 7

7 Disk defragmentation 10/ 10
v - 0 pts Correct
- 1 pts Some details missing/wrong.
- 9 pts Wrong.
- 4 pts Not accurate.

- 10 pts Empty.

QUESTION 8

g Preemptive scheduling with threads 3z /10
- 0 pts Correct
v -7 pts Voluntary yielding is not preemptive
scheduling.
- 10 pts Totally wrong

- 8 pts Not very effective for real preemptive

scheduling.

- 8 pts Putting a thread into an infinite loop will
definitely not preempt it.

- 8 pts The alternate interpretation is right, but then
how does the library achieve preemption?

- 10 pts OS knows nothing about these threads.

- 8 pts How do you preempt a thread this way?

- 6 pts Which interrupts/system calls?

- 10 pts But how can you actual preempt?

-10 pts This is not a problem in mutual exclusion. It
concerns mechanisms for controlling execution.

- 4 pts More details on what system calls to use (i.e.,
timers).

- 10 pts Use timer interrupts.

- 0 pts Simpler to just ask the OS for a timer
interrupt, but this probably would work, too.

- 5 pts Close. The process hosting the threads can
ask for a timer interrupt and use that opportunity to
switch to a different thread.

- 8 pts Without OS assistance, how could this be
done?

- 0 pts Clumsy, but workable. Scheduling timer
interrupts would be easier.

- 8 pts Vastly cumbersome to recast a local
multithreaded program as a distributed program so
you can gain control via RPC. Use timer interrupts.

- 10 pts No answer

QUESTION 9

9 Sloppy counters 10 /10
v - 0 pts Correct
- 3 pts wrong answer for the first question
- 3 pts wrong answer for the second question
- 4 pts wrong answer for the third question
- 2 pts missing the key point “inaccurate” for the
third question

- 10 pts wrong answer

QUESTION 10

10 Semaphores and thread initialization 10/
10
v - 0 pts Correct

- 2 pts Semaphore blocks on < zero.

- 3 pts Parent runs wait before it can run.

- 2 pts Not considering both orders of operations

- 3 pts Counter should be zero

- 4 pts Post increments, wait decrements.

- 10 pts Totally wrong

- 3 pts Must specify the parent's semaphore
operation.

- 6 pts No guarantee that child runs before parent,
so this set of operations won't always work.

- 7 pts Not how semaphores work, as described.

- 3 pts Child just runs post, parent just runs wait.

- 3 pts Child must do initialization operations before
the post().

- 7 pts As described, nobody ever gets to run. Child
decrements semaphore on wait(), it's less than zero,
he blocks, so nobody ever posts and wakes him (or
the parent, who also blocks).

- 10 pts Semaphores, not mutexes.

- 3 pts Must specify the child's semaphore
operation.

- 3 pts Must not call wait before creating child, since
then there will be no one to post.

- 10 pts No answer

QUESTION 11

11 Hold-and-wait and deadlock 10/10
v - 0 pts Correct

- 2 pts While this does avoid deadlock, it doesn't
guarantee progress, since the two threads can each
re-acquire one of the locks, then fail to acquire the
other one.

- 4 pts This is not a universal solution, since you
cannot necessarily group all locks needing to be
acquired together. Unless you put all locks under
one lock, which serializes locking, which could be
worse than deadlock. OK if you specify that the
global lock can be released after acquiring other
locks.

- 4 pts Very hard, in general, since many reasonable
operations require more than one resource to be

updated atomically, and thus locked.

- 2 pts "In advance" isn't enough. Must request
them all at once.

- 10 pts Totally wrong.

- 3 pts If you seize someone's lock this way, you
may run into atomicity problems.

- 3 pts If you use one universal lock to control
obtaining the others, either you must hold that
universal lock as long as you hold any locks, or you
must specify that all locks you need are obtained at
once while holding the universal lock.

- 3 pts Not allowing parallelism at all is not a great
solution, and can't work for multi-process scenarios.

- 5 pts Spin locks will never resolve the deadlock.

- 2 pts Only viable if lock holders know they might
lose their exclusive access. With leases, they
inherently do. Otherwise, maybe not, which can
cause problems.

- 5 pts Not helpful unless someone releases a lock
eventually.

- 3 pts What is the condition that can't be done?

- 2 pts Not clear what you mean by "preallocating".
Correct for some reasonable meanings, not correct
for others.

- 4 pts Unclear explanation of why it causes
deadlock.

- 4 pts Lots of reasons events don't occur. Only a
deadlock if the reason is someone else holds a lock
preventing it.

- 5 pts This approach attacks the mutual exclusion
condition, not hold and wait. You can have mutual
exclusion while still preventing hold and wait.

- 3 pts Kills parallelism if you must hold global lock
while holding any other lock.

- 5 pts Priorities won't help.

- 5 pts So how do you avoid it?

- 4 pts Can happen with locks at the finest
granularity.

- 5 pts Far more drastic than necessary. Without
further investigation, how do you know which waiting
processes to even kill?

- 2 pts How do you generalize this?

- 4 pts Not helpful to only take locks away when a

process is done with them.

- 5 pts Incorrect description of hold-and-wait
problem.

- 5 pts If mutual exclusion is required on a particular
piece of code, you can't move it out of lock, so this
isn't a real solution.

- 5 pts Preventing preemption doesn't help.

- 5 pts Semaphores don't prevent deadlock.

- 5 pts Waking a thread waiting on a lock doesn't
help.

- 5 pts Scheduling alone won't help. And not
running any other process while one is holding some
locks would kill performance.

- 4 pts More details on what you mean by
reservation here.

- 4 pts Just checking doesn'"t help.

- 3 pts A bit more than that is necessary to take
away a lock without causing problems.

- 5 pts Would cause serious concurrency problems.

QUESTION 12

12 Event-based concurrency and async I/O
10/10
v - 0 pts Correct
- 2 pts missing the point that there is only one
thread handling all events.
- 10 pts wrong
- 2 pts missing the point that it affects performance
and concurrency
- 2 pts missing the point that synchronous I/O

blocks other events

QUESTION 13

13 Optimizing file writes 10/ 10
v - 0 pts Correct
- 3 pts Cylinder groups don't help that much on
writes.
- 1 pts Delayed writes also complicates ensuring file
system consistency, especially in the face of crashes.
- 2 pts Write buffering doesn't have anything to do
with sequential writing. It's about delaying writes till

they're cheap or unnecessary.

- 10 pts Nothing to do with file system write
performance.

- 4 pts Not really a write optimization. More about
reads.

- 3 pts Require more details on exactly how this
optimization interacts with writes.

- 2 pts Introduces problems with on-disk
consistency.

- 10 pts Not a write optimization

- 1 pts Write buffering usually handled in block I/O
cache.

- 3 pts Complexities?

- 1 pts Journaling requires garbage collection.

- 10 pts No answer.

Page 4 sl gradescope

1. Why is the DOS FAT file system unable to efficiently store sparse files? Why
can the Unix System V file system store such files much more efficiently?

DoS FAT €k syster allocatss chuunks

o £ius. So iF Sparse ous (wvuew Swadler W
éi@u Thew The Caun '3 ‘%"aza,,\) ove Yo Lo Stoved,
e Loould Lo o lot of Mbvned fapmuntation

AN dum ublid € fv(_‘“a:} ¢ Span.

Uuix_ Spshom VBl gysdem 0w Thn ot Wond
Foddus Tws 1SS by Wewias € mell v BX e ~Siz<d

g 0\\\0&%“(7@/\5 6/ CaseS oF TP S S\s Aond

v\,ﬂ\[‘i’)w SNV olse \Mave \\Wv@ev’” G\‘x,wo\—si'%@‘ allecetion s

fork of ke & M%@%(fd,% b attenwt for swall o gwﬁ(/ Hluy

7, What is the difference between a hard link and a symbolic link in a Unix-style file
system? What implications does this have for how metadata about the file referenced by
the link is stored?

/3(v d\ \5\:\\2 S Soct atld & Ve Ble \A@\M
T\/\o\’(QDM)(B o ‘e Sawan imocdki o f

e —

T Ble Yy avc \iver M o .

A‘ S W\\%\{c, \:\/\\C SE\/"’W\)\U Coxtmay A ?wﬁb\ Vi
oMY — | —

’&M{) w?h\aw "{: %}&Q/ UD\)\ o< \\! U\HWJ "Eﬁ-\ -
T W ol T\ /E‘\\ o vekeromol vould e {omméx
AN T NMeodhos .(:\9 Y M’%’ ’ ’%M .

A (;OVV\“?O%\@Q/ \mk o 7 o Yot o \VA & m VAT RN .@mwg! —ébg |
5 ety BW Systws Cusvdsline con't). Tur
& Twa AW s dwubkd, i tewdd pemat to V\»TW\»J |

3. If you use capabilities to provide access control in a distributed environment,
what extra challenges do you face that you do not face when using them in a single
machine environment?

Owne C\/\.Dti Lw? & 5 Secwrv j(“i’) . %Q cause b@%

are wst e o Swsle S A egmviream et

’T\w fre \/\)t\\ Mave {vp \Q«,, C oW watl ca¥T on loChwoon
w\l\\ oM Cown Lac_, ConA \Df‘c\z\/\,\g ﬁd sl\/\%
\f; 0 \AC}& (= 'i;'{\f“%— LZRVESR W"@ ig(‘%"""" / SDVVVL»OJ\;\

coptwe s dhotta .

mmwcﬁmm%)
a c:m(bﬂ‘bm%\j)
C/me\.& ?QW ﬁmmﬁﬁ\:}

\Q@ QME Lt Cm"%\: @} :

foneCane Q\M\\m} ¢ coddl
0\/\/‘ L& }(0 m,mn -@%«(&' [%‘%& C K@@Aﬁx&&ﬁ} Lot i
Vot owS VA W e

Ty addiben P aloi ik s @wwm%’c« o st =€

wle COw agess @ Pov Nowloy eSownree dm% wet & Sexlh el
e 4, What is meant by horizontal scalability in a distributed system? Why is it good?

HO v Z»@/\‘j‘l("“m,\ Ce a\iw\ﬁ 'S o CW ev el %ﬁ

mddmj A {fg@wcﬁ:/ QMM A

@ad g:iﬁw @mgﬁ«uf V\/\O\(:/\/\x\l\x, /5ervw‘ ’ﬁs
T a\iﬁ\/%wl{lai gb&%cw.

]:’k i ovoed o Comse it S
. + odd
o rc/\mh%\j C}W‘”%E oy o
procssny pans osd erec pUfTeve
_.

\j\)m \/ko«f\’z,afk”\?'?‘»\ fo’t\ j bggk Qo m«a"l:
pmiked 5y erdwere) bud velhoy Ly

/Y\:\SL/ W&\&w(} (A4 (j@/\iﬂ &’g Qﬂd 0{ (& WA ca c;,ma%&g

5. What kinds of attacks does full disk encryption protect against? Why is it
effective against these attacks?

?‘f’\\\\ Ask evicry Q}’ﬁ oN PO ‘s
y)~
g/\/\ﬂ(\(g (ieusS Q{'H e C.!(S Ww’{ a#ﬁm@% S
a‘./’ﬁ-/)f%‘/ﬁ"‘i«ﬁﬁ é}”’g otk &mm “Thaa {’,}& A Even
i E @;‘MWQ\A, [N m“‘\w}u&' *’E’“ﬁ ot (/.7/ wire. ’\/\f\J\. dx(S‘ \L
d\@%«% / f IS wy g*(@t , “lan Wj
\JJQ\/\," X Lo Q"}% '}?"’b ‘QXQ\DK "(S VN = S VY P

ot T Aata

aa st

6. When the operating system issues addresses for RAM locations for its own use
(such as accessing a process control block or finding a particular buffer in the block
cache), is it issuing virtual addresses or physical addresses? Why?
Tl ©OS vichealizes e | addvess SPAes
e : - Al S
Lor A Hive Tl \LuSien

& east e
b casted

c2sS WS e ewive Spatt.

Yo o wwale

M.\ {{/fol ’%;7 Ve

k] \¢ ‘

. ovl (’;% NI M)i ¥ *g‘: .1 . (i)g wi 225

TA o \fm,x WA . ’ - e
& N G mok W(;?LS) y de U)

e i e "

\f% [avel "k"\mM (oY @»C 7

‘ T L& | '%"f% :%Z/;;i_ﬁ‘ﬂ{ﬁu s

- —\ gﬂ!;é;'img . ~ S §
Vi e owld@;s + P

_——

?A?M_ T bl of

7 What form of fragmentation does hard disk defragmentation help with? Why
does it help with this form and not the other form? -

bovd Disk braqgwuutation WS

0%;;&% e i§§m<, of extvmed e t_”‘f_’f:\
Fir Wmstaa, as 'UO‘C\CS are fredd

Thare Wiy Lo Smallev _QM« Llockes gca"lﬁ’ﬁfcd M

CAS @@(}931& (ba 0,\‘ \OV\:;L mCQr“\Jﬁ ’)U\VDV\,S f{%%c%q,

ond dA&‘w&WM%{Wﬁ{”’E’@/E Coan h&}P \09 T”({,C&(fmﬂa{v{} ‘ﬂ‘b ‘
Llockes . Sruee blodks a Lixeo -sized oflocetions,

intemel Ao munt=tion 15 Ui awveid q‘o\(_,/ omdl OLC&C/"D W\Mfwwiho/,
Cagt‘%" hlp J Thet (e, 2 dilheant &S con't Shaw Po\f‘\” \)

How can a user level thread package achieve preemptive scheduling? oft n bleck

Pre awmphve SQ«MM»QMJ weerdd Uowe
Lo 4 o - ecd &g 43 @f‘amé% %fzf’m*\’twq/ MJ(Q 5
iVV\()\LxMM_\;/c,d S\l ««H\{ oS fan

{M\D AR \v}w«’" Awd Twreads o 4

SX\/&Q N | ,,: W OASS w‘%w:} ,
@ VA \mcfuj Q,@w\\é \‘?f«w J(”“'V Coum y € ‘"”Hﬂ%

WS \wdd 1 \fur\ea,,okj A \O\ Ad So Thet
1 {7&5 «P—?Q/&wx,f % ’1(\/\,(cf‘\a{ Con L«X, ¢ o‘/LAdeLDl

% WAV

11, What problem is solved with sloppy counters? How do they solve this problem?
What 1s the disadvantage of using them?

g}O{’\?:} Couvirer s \’\L\QS 'gm\w,, ’ﬂ/w DS WA -t

V(f‘(’DfM&MUf ’ 0&/\0‘(gc;m{éto; h%’j —‘(:mf MS}vxj A
1 R T T T S T S A

T\/\iS ?f“@\O\k}‘ﬂ; *bgi,} C}}Vév’aj £oac\ "ﬁ’\f't c«we (‘)’ 3”; Q}:/\ s
§q o /ﬁ/lf“(_m A8 ot AN

\O Qm‘ M NS A Q\Q?’k\’t . i .
k "k o 0 o, . '
Ther (ounal (CieWtL, thee 5 V2 oAnn = = |

. X : mﬁ\w .
wogeqwﬁ VRS Sal vy A M ‘M’kﬁw\;h‘!‘ C’S -
;] . i A o)
Ry oo Cox\-\g) up dated | whi e\ comoing Le MY{)‘N ‘
St wad (global Count) My met | e elluvedc
A W{’ IS At owat L9 Ca(»—@fwci,i«‘? on The
2. onsider the following use of semaphores. A parent thread creates a child thread. dare . (‘b
The parent should not run until the child thread has performed a set of \’\Q o ?C«ﬂﬂ A
initialization operations. What should the semaphore’s counter be initialized to? ‘
Which semaphore operations should the parent and child thread call, and when?
Why does this use of a semaphore achieve the desired goal?

Po\qwﬁ' 'T\/\{ f(c&()\\ %gwﬁaﬁm . Cw \rl - /ﬂé\f MC) ?S(AA ds Ccocha. ,
Jiwit @eﬂw‘m?\m‘f«v Count Yo O | \5 VANV ERRVIR s EN Uy whign opfeloqs
N;} cx eoXC A\ Twr tael 2/5 \)o%'f CSO«’WC«@\’\@“’:\}

L) Weit (Semaphore) e~

3 3 : X S K < L OX wis ”j\ru,
B e R b
| “(\/\rmf jo Slegp & ouar<Q
By iniidiziag Th gemS cowat 4o D, ad placias, the weit/Pes?
OQeredienS &S St avVe Y eians con Meppen - B
A cramko AWl calls waitly, ond The Gomaphore couwt 15 7\,

| /Lb ol L | e | |

) \ ?fm;? A0S »{»5 gﬁaﬁ?n~ Owne c:\z\i\(x -%»\5\,\% %ﬁ_ghmv&mﬁﬁﬁ, ook
gfv Q@“ Mt O & (f’ T e Q@&m‘\f S %“W“Q«Mg{i d % Q et c* ’\/\/\L
e col\s w J ? .

75 Hivug

o X CoM wete e O\/‘ﬁ\ Con # |)

) I’;,Q by e X povent cmlbt weiit) ,OVLJ\ ot O‘x«‘lﬁx@w\m’f’%mﬁ)
Phe CownX 15 0 et wems e AW alvedy |

%.m‘g%A i athiely ”Z,mﬁ«:’/i%f\y ond A \,q, H?@fc‘/ﬁf Can Contivuyge,

13, Why is hold-and-wait a necessary condition for deadlock? Describe one method
that can be used to avoid the hold-and-wait condition to thus avoid deadlock.

»H‘O\f}\ “w"wmﬁi \/\Oﬁ?(}févt;% o §%0&f%"-j ’}fb ATy uire
gl edes. TF cd ke “lelding” b ks
L A)\A KA N) CAY 3{“}% G %w{ OLMQ)V‘% ‘55’*”’%@3& \@&hg (_\/“‘S CC‘IV'\
lead b o Ao dlode £ A IS mmwj £ o lok

© h e
Tt B is Wlding | bt B Ml onb Ty
lock owe wa;‘%*'m\«} L owoThey lock & well, |
\}d\‘”\/\«@u&’(' TWis condihion | adleck voodd uot occuy,
beComs e €Vé%m“uj) A%E lecks S%af-«ié E;»e,, Yawagﬁd , end

/h/_bﬂ)i> \/\e'\ \V\Q\V\\‘\“(_, wc;u’ﬂw? .
One. wethod 1 owold Twis S o vdaSe Prexiony \a{:\gg
oS rg,aigg«f,?/z,g,g [ocks gre 3 b Ll Uva vailable . For~ vofom \\A%mecc/

Why is asynchronous I/0 useful for systems using event-based concurrency?

agqwire Leck Ag

1€ can¥t acquie B

:}:\A ﬁﬁm&, QQ%T{M ®£ 2 Ql\/'l@l&,-ccowﬁ/ WL.&LO\MM,)
ve\ease A

S Y)\/\G\/\\f owel) T / o wakrs event—Laged

Cen Qmw&wmﬁ @935{\7&‘ Cwen Thre's ®4\°3 &
q&?‘w W At - \mp & Thards an T/ reqwﬁ
N O\%t}vxc,« T/e Can Lo Wozmx%ﬁa}\ W ithout \O\OQ\KA\A\? [ound ”ih
\f@vvm,i‘v\wxg ovoas con Thea be ?(@M‘i?{d .

Wi The uk aSYnC ﬁ_/'a : thare wWorld Lo We cawmwmc:)!
Y Leannse e Lo Vﬁ‘{fm"% Wweuldl lleck ond usm ‘%ﬁ}
e weld i dene

15. Describe an optimization related to making writes to a file system perform better.
When does this optimization help? What complexities does this optimization add
to the operating system and to expected file system behavior?

OV\L '\7/)(\3{, DS; @Qi\ Wz ot oA S 3(\,\& Wy O{T ' a

.,bﬂ‘im%(’Mﬁ/ _C’_,f__@_e, Se ”ﬁ/\r\:’& LN u’ﬁ * gl L \(L ’ C e Q? é{m 6‘3\,@‘%»
Wecessawily veond n an Fle spuedien
T/

Dol woy This tma Wde 15 oy merghy

V¢ "LM% ond Twd Y&{W‘ﬁv@ ces Tha oues %\\ WAl ar—

m“f o <Ruetion (e @mv%ﬁs S I/

equsts ore slow, Ths cow

pu e mimac “ |
f{w{%ﬁﬁ&f eyl Thes edd W\Q o ik o ’g"é""\«‘? kg
Gl 1S \o@m? orwted and b\t Shertly ofder.
SavlsS +imae 103 et

greaitly mpvIne

LW s spbwizatien 7
\/\‘W'?“”@ o isSu~ +\/\k [~ T"‘ﬂ-@wﬂ’ ol o e “ 5

Wre Qaad fewmp £ & Aigy.
A\/\ Eéﬁ{i‘:d ’CMQ‘%«@ Wew Tha w or gm%&cﬁ

A @;%5{{& VAL wWlon 4p acflmp»t(\> ke A

M X
'hr\.,» d& ‘S”\C. , j"/m cddition | (D’\ S W\o-g \gm\h;} NIV

W N TWwe Cosc st < S} Yo) cvagia

(That could bor Wore ot That Luasn't
Atk 5&”@% Tha cfmgh\;

A o be ow ritta A

