
CS 111 Final exam, short
Nate Nateerawut Sookwongse

TOTAL POINTS

108 / 130

QUESTION 1

1 sparse files 7 / 10

 - 0 pts Correct

✓ - 2 pts Did not mention block level allocation detail

for FAT

✓ - 1 pts Did not mention pointers in Unix Systems

 - 2 pts Did not demonstrate understanding of FAT

table entries

 - 8 pts Did not answer the question

 - 3 pts Incorrect understanding of Unix System V

QUESTION 2

2 Links 9 / 10

 - 0 pts Correct

✓ - 1 pts Did not go into detail about name storage

and datablocks

 - 2 pts Did not talk about link count

 - 3 pts Incorrect understanding about metadata

comparison

QUESTION 3

3 Distributed capabilities 10 / 10

✓ - 0 pts Correct

 - 3 pts Did not go into detail about network attacks

 - 3 pts Did not show understanding of capability

 - 2 pts Did not explain lack of challenges in single

machine environment

 - 5 pts Did not answer the question

QUESTION 4

4 horizontal scalability 10 / 10

✓ - 0 pts Correct

 - 1 pts Missing some details.

 - 3 pts Not very accurate.

 - 9 pts Wrong.

QUESTION 5

5 Full disk encryption 9 / 10

 - 0 pts Correct

✓ - 1 pts Missing some details.

 - 4 pts Not very accurate.

 - 7 pts Wrong in explaining attacks.

 - 9 pts Wrong.

 - 10 pts Empty.

QUESTION 6

6 Addressing in the OS itself 0 / 10

 - 0 pts Correct

✓ - 10 pts Physical Addresses

 - 5 pts The OS uses the same CPU as user

processes do, and its instructions are passed through

the same MMU as the instructions of those user

processes.

 - 5 pts Provide extra wrong answer

 - 5 pts The concept is correct, but it doesn't answer

the question directly.

QUESTION 7

7 Disk defragmentation 10 / 10

✓ - 0 pts Correct

 - 1 pts Some details missing/wrong.

 - 9 pts Wrong.

 - 4 pts Not accurate.

 - 10 pts Empty.

QUESTION 8

8 Preemptive scheduling with threads 3 / 10

 - 0 pts Correct

✓ - 7 pts Voluntary yielding is not preemptive

scheduling.

 - 10 pts Totally wrong

 - 8 pts Not very effective for real preemptive

scheduling.

 - 8 pts Putting a thread into an infinite loop will

definitely not preempt it.

 - 8 pts The alternate interpretation is right, but then

how does the library achieve preemption?

 - 10 pts OS knows nothing about these threads.

 - 8 pts How do you preempt a thread this way?

 - 6 pts Which interrupts/system calls?

 - 10 pts But how can you actual preempt?

 - 10 pts This is not a problem in mutual exclusion. It

concerns mechanisms for controlling execution.

 - 4 pts More details on what system calls to use (i.e.,

timers).

 - 10 pts Use timer interrupts.

 - 0 pts Simpler to just ask the OS for a timer

interrupt, but this probably would work, too.

 - 5 pts Close. The process hosting the threads can

ask for a timer interrupt and use that opportunity to

switch to a different thread.

 - 8 pts Without OS assistance, how could this be

done?

 - 0 pts Clumsy, but workable. Scheduling timer

interrupts would be easier.

 - 8 pts Vastly cumbersome to recast a local

multithreaded program as a distributed program so

you can gain control via RPC. Use timer interrupts.

 - 10 pts No answer

QUESTION 9

9 Sloppy counters 10 / 10

✓ - 0 pts Correct

 - 3 pts wrong answer for the first question

 - 3 pts wrong answer for the second question

 - 4 pts wrong answer for the third question

 - 2 pts missing the key point “inaccurate” for the

third question

 - 10 pts wrong answer

QUESTION 10

10 Semaphores and thread initialization 10 /

10

✓ - 0 pts Correct

 - 2 pts Semaphore blocks on < zero.

 - 3 pts Parent runs wait before it can run.

 - 2 pts Not considering both orders of operations

 - 3 pts Counter should be zero

 - 4 pts Post increments, wait decrements.

 - 10 pts Totally wrong

 - 3 pts Must specify the parent's semaphore

operation.

 - 6 pts No guarantee that child runs before parent,

so this set of operations won't always work.

 - 7 pts Not how semaphores work, as described.

 - 3 pts Child just runs post, parent just runs wait.

 - 3 pts Child must do initialization operations before

the post().

 - 7 pts As described, nobody ever gets to run. Child

decrements semaphore on wait(), it's less than zero,

he blocks, so nobody ever posts and wakes him (or

the parent, who also blocks).

 - 10 pts Semaphores, not mutexes.

 - 3 pts Must specify the child's semaphore

operation.

 - 3 pts Must not call wait before creating child, since

then there will be no one to post.

 - 10 pts No answer

QUESTION 11

11 Hold-and-wait and deadlock 10 / 10

✓ - 0 pts Correct

 - 2 pts While this does avoid deadlock, it doesn't

guarantee progress, since the two threads can each

re-acquire one of the locks, then fail to acquire the

other one.

 - 4 pts This is not a universal solution, since you

cannot necessarily group all locks needing to be

acquired together. Unless you put all locks under

one lock, which serializes locking, which could be

worse than deadlock. OK if you specify that the

global lock can be released after acquiring other

locks.

 - 4 pts Very hard, in general, since many reasonable

operations require more than one resource to be

updated atomically, and thus locked.

 - 2 pts "In advance" isn't enough. Must request

them all at once.

 - 10 pts Totally wrong.

 - 3 pts If you seize someone's lock this way, you

may run into atomicity problems.

 - 3 pts If you use one universal lock to control

obtaining the others, either you must hold that

universal lock as long as you hold any locks, or you

must specify that all locks you need are obtained at

once while holding the universal lock.

 - 3 pts Not allowing parallelism at all is not a great

solution, and can't work for multi-process scenarios.

 - 5 pts Spin locks will never resolve the deadlock.

 - 2 pts Only viable if lock holders know they might

lose their exclusive access. With leases, they

inherently do. Otherwise, maybe not, which can

cause problems.

 - 5 pts Not helpful unless someone releases a lock

eventually.

 - 3 pts What is the condition that can't be done?

 - 2 pts Not clear what you mean by "preallocating".

Correct for some reasonable meanings, not correct

for others.

 - 4 pts Unclear explanation of why it causes

deadlock.

 - 4 pts Lots of reasons events don't occur. Only a

deadlock if the reason is someone else holds a lock

preventing it.

 - 5 pts This approach attacks the mutual exclusion

condition, not hold and wait. You can have mutual

exclusion while still preventing hold and wait.

 - 3 pts Kills parallelism if you must hold global lock

while holding any other lock.

 - 5 pts Priorities won't help.

 - 5 pts So how do you avoid it?

 - 4 pts Can happen with locks at the finest

granularity.

 - 5 pts Far more drastic than necessary. Without

further investigation, how do you know which waiting

processes to even kill?

 - 2 pts How do you generalize this?

 - 4 pts Not helpful to only take locks away when a

process is done with them.

 - 5 pts Incorrect description of hold-and-wait

problem.

 - 5 pts If mutual exclusion is required on a particular

piece of code, you can't move it out of lock, so this

isn't a real solution.

 - 5 pts Preventing preemption doesn't help.

 - 5 pts Semaphores don't prevent deadlock.

 - 5 pts Waking a thread waiting on a lock doesn't

help.

 - 5 pts Scheduling alone won't help. And not

running any other process while one is holding some

locks would kill performance.

 - 4 pts More details on what you mean by

reservation here.

 - 4 pts Just checking doesn''t help.

 - 3 pts A bit more than that is necessary to take

away a lock without causing problems.

 - 5 pts Would cause serious concurrency problems.

QUESTION 12

12 Event-based concurrency and async I/O
10 / 10

✓ - 0 pts Correct

 - 2 pts missing the point that there is only one

thread handling all events.

 - 10 pts wrong

 - 2 pts missing the point that it affects performance

and concurrency

 - 2 pts missing the point that synchronous I/O

blocks other events

QUESTION 13

13 Optimizing file writes 10 / 10

✓ - 0 pts Correct

 - 3 pts Cylinder groups don't help that much on

writes.

 - 1 pts Delayed writes also complicates ensuring file

system consistency, especially in the face of crashes.

 - 2 pts Write buffering doesn't have anything to do

with sequential writing. It's about delaying writes till

they're cheap or unnecessary.

 - 10 pts Nothing to do with file system write

performance.

 - 4 pts Not really a write optimization. More about

reads.

 - 3 pts Require more details on exactly how this

optimization interacts with writes.

 - 2 pts Introduces problems with on-disk

consistency.

 - 10 pts Not a write optimization

 - 1 pts Write buffering usually handled in block I/O

cache.

 - 3 pts Complexities?

 - 1 pts Journaling requires garbage collection.

 - 10 pts No answer.

Page 4

