
cs 111 Operating Systems Principles, Spring 2006

Midterm Solutions
You have 110 minutes to complete this midterm.

Write your name on this cover sheet AND at the bottom of each page of this booklet. Use
the backs of the pages if you need to.

In order to receive credit you must answer the question as precisely as possible. Some
questions may be harder than others. Read them all through first and attack them in
the order that allows you to make the most progress. If you find a question ambiguous,
be sure to write down any assumptions you make. Write down your reasoning; this will
make it easier for us to give you partial credit.

OPEN BOOK, OPEN NOTES, CLOSED COMPUTER

I (xx/15) II (xx/25) III (xx/25) IV (xx/15) V (xx/30) Total (xx/110)

Grade statistics
Average 70.5
Median 70
High score 104
Low score 43
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I Abstract machines

1 [10 points].Which of the following abstract machine properties are likely to be the
same across all operating systems for a given type of processor, and which might
differ from operating system to operating system? Circle one per row. If you’re not
sure or think there might be some ambiguity, pick one and justify your answer.

A. Register names Always same Sometimes different

B. Scheduling priority Always same Sometimes different

C. Instruction set Always same Sometimes different

D. Maximum number of open files Always same Sometimes different

E. Initial stack pointer Always same Sometimes different

F. System call set Always same Sometimes different

G. Quantum Always same Sometimes different

H. Pointer size (e.g., 32 bits) Always same Sometimes different

I. Protected instructions (e.g., “HSC”, Always same Sometimes different

Halt and Spontaneously Combust)

J. Signal names Always same Sometimes different

Note on H.: Some processors do allow the operating system to choose pointer size—AMD’s
x86-64 architecture, for example, supports either 32-bit or 64-bit pointers. You had to mention
this explicitly to get credit.

2 [5 points]. WeensyOS 1’s extra credit problem #7 asked you to “Introduce a
sys_kill(threadid) system call, which forces thread threadid to exit;” the system
call should return 0 on success and −1 on error. Recall that this was after you im-
plemented the wait queue, where a joining thread would block on a waiting thread.
Here’s an attempt at the system call implementation:

case TRAP_SYS_KILL: {
threadid_t t = current->t_registers.reg_eax; // get thread ID to kill
threads[t].t_state = P_ZOMBIE; // kill it
threads[t].t_exit_status = 0; // arbitrary exit status
current->t_registers.reg_eax = 0; // return 0, indicating success
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run(current); // return
}

There are at least four problems with this implementation; briefly describe at least
two of them.

1. t is not bounds-checked; if the user passes a value < 0 or≥NTHREADS, memory corruption
will ensue.

2. The current state of t isn’t checked. If the thread is empty, the system call should fail—or
at the least its state shouldn’t be turned to P_ZOMBIE.

3. If the thread kills itself, it will run nevertheless (since the run(current) will run the
thread regardless of its state).

4. This code does not wake up the thread’s wait queue.

II Interface design

Modern operating systems have added functionality to the abstract machine interface
to support new uses. This question concerns one such example, directory notification. This
supports the Open and Save dialogs ubiquitous in today’s applications. Here’s an example:

1. The user chooses Open in a text editor, which displays an Open dialog. The dialog
shows the contents of the user’s Documents directory.

2. Meanwhile, in the background, a Web browser is downloading a file resume.txt into
that same directory.

3. As soon as the download completes and the file is created, the Open dialog changes to
show resume.txt as well.

There are many ways to implement directory notification, each with different properties.
In this section you’ll compare and contrast several possible implementation strategies,
namely these:

A. Periodic refresh. Every T seconds the Open dialog rereads the directory and displays
what it finds.

B. File system trace. The operating system provides a special device file, /dev/fstrace.
All file system changes are written to the file in a special format. Applications can
open that file and read the file system changes from it. Reading from the file will
block until there is a change.

C. Directory versions. The application can obtain any directory’s current version. The
operating system updates a directory’s version when any changes to that directory are
made. The application reads the directory’s version, compares to its cached version,
and rereads the directory when the version changes.
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D. Directory trace. This is like B, the file system trace, except that a special function
is used to provide a trace file for a named directory. Only changes that apply to that
directory are written to the file.

E. Provisional files. A new function “int wait_for_file(const char *filename)” blocks
the current process until a file named filename is created. This function will notify
the Open dialog when resume.txt is created.

F. Directory signals. A new function “int dirsignal(const char *dirname, int signo)”
will cause the OS to send the current process the signo signal on any change to the
named directory. The Open dialog will reread the directory in response to the signal
handler.

3 [4 points]. One of these implementation strategies just plain doesn’t work: it cannot
detect some file system changes. Say which one, and give an example of a change that
it will not detect.

E (provisional files) won’t work. It’s a pretty bad interface: the Open dialog application
would have to call wait_for_file for every possible file name. Worse, provisional files will
not detect file deletions.

4 [6 points]. For each implementation strategy, say whether it is more like polling,
blocking, or interrupt-driven.

A. Periodic refresh Polling D. Directory trace Blocking

B. File system trace Blocking E. Provisional files Blocking

C. Directory versions Polling F. Directory signals Interrupt-driven

5 [5 points]. Which of these implementation strategies requires a new system call
(relative to the system calls covered in class, and normal system calls to open and read
directory entries)? List all that apply.

C, D, E, F—although if you claimed that this could all be done with ioctl we gave you
credit.

6 [5 points].Which of these implementation strategies would require a new thread to
specifically handle directory changes?

B, D, E: the calls that block.
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7 [5 points]. Give an example scenario when A. (Periodic refresh) will perform better
than B. (File system trace). Elements of the scenario might include directory size,
refresh time T, the rate of changes to the directory, the rate of changes to the file
system, and so forth.

If the relevant directory is small (not many entries), and the rate of changes to the directory
is low, but the rate of changes to the whole file system is large, then periodic refresh will
outperform file system trace—in that periodic refresh will have less overhead, so more time is
spent doing useful work.

III Processes and threads

A team of archeologists discovers the following C source code inscribed on a cuneiform
tablet near present-day Indianapolis. Unfortunately, a part of the source code has been
garbled—hopefully you can tell which part.

char *buf = "X";

void child(void *) {
buf = "A";
write(1, buf, 1);
exit(1);

}

int main(int c, char **v) {
AMSDIOoie2iqidjU*(&#!!#(*$)(R*AS&DHzjxnzknalidu982u43.com
buf = "B";
write(1, buf, 1);

}

You know the garbled portion either creates a child process that runs the child function or
creates a new thread that runs the child function, but you don’t know which. (You know
the garbled portion does nothing other than create a new process or thread.)

On the other side of the tablet are several inscriptions describing different possible outputs
when this program is run. Assume that each inscription describes all possible output from the
program (if no system calls return an error). Use your forensic skills to determine which of
the following possibilities apply.

A. If the inscription is correct, then the garbled portion creates a child process.

B. If the inscription is correct, then the garbled portion creates a new thread, and the
operating system uses preemptive threads.



cs 111 Midterm Solutions, Spring 2006 Page 6 of 13

C. If the inscription is correct, then the garbled portion creates a new thread, and the
operating system uses cooperative threads.

D. The inscription is a trick: neither threads nor processes will have the given inscription.
(For example, the inscription contains an output impossible for a new process, but is
missing an output possible for a new thread.)

One way to think about this problem is to write out exactly what output each of A, B, and C
might generate in the absence of system call errors.

A. Processes might generate AB or BA only. Processes have isolated address spaces, so setting the
value of buf in one process will not affect the other. Also, each process exits independently.

B. Preemptive threads might generate any of AA, AB, BA, BB, A, and B. AA and BB can happen
if the operating system preempts one thread after it sets buf, but before it calls write, and
runs the other thread. A and B can happen if one thread exits the containing process before the
other gets a chance to write: remember that when a process exits, all its threads are killed.
(This is how exit and pthread_exit differ.) The child function exits explicitly with a call
to exit; the main function exits implicitly by running off the end of the function.

C. In cooperative threads, the thread implementation can switch between threads at system
calls, but is not required to do so. This prevents AA and BB from happening, but all the other
output from preemptive threads can still happen: AB, BA, A, and B.

That leaves us with the following answers.

8 [3 points]. AB or BA

A. New process C. New thread, cooperative

B. New thread, preemptive D. None of the above

9 [3 points]. AA or AB or BA or BB

A. New process C. New thread, cooperative

B. New thread, preemptive D. None of the above

10 [3 points]. A or AA or AB or BA or BB

A. New process C. New thread, cooperative

B. New thread, preemptive D. None of the above
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11 [3 points]. A or B or AA or AB or BA or BB

A. New process C. New thread, cooperative

B. New thread, preemptive D. None of the above

12 [3 points]. A or AB or BA

A. New process C. New thread, cooperative

B. New thread, preemptive D. None of the above

13 [5 points]. Describe an example scenario that would cause the output B . (You’ll
have to change the assumptions above.)

The easiest way to change the assumptions is simply to allow system calls to fail. If the
system call to fork a new process failed, for example, then the program would output B only.

14 [5 points]. Assuming that this is a Linux/Unix program, write down the actual code
for creating either a new process or a new thread (i.e. the code that got garbled). Say
which you chose (process or thread). We will accept small deviations from the Unix
system calls or Posix thread creation calls, but get as close as you can.

Processes Threads

pid_t p = fork();
if (p == 0)

child(NULL);

pthread_attr_t thread_attr;
pthread_t pt;
pthread_attr_init(&thread_attr);
pthread_create(&pt, &thread_attr, child, NULL);
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IV Scheduling

15 [8 points]. Say that the following jobs arrive at a CPU scheduler all at time 0 in
alphabetical order. Draw Gantt charts for the following scheduling algorithms given
this set of jobs. In addition, calculate each schedule’s average turnaround time and
average wait time, neglecting the cost of context switches C.

Job A B C D
Service time τ 3 1 2 4

A. First Come First Served

A B C D
0 3 4 6 10

B. Preemptive Round Robin with Quantum Q = 2

A B C D A D
0 2 3 5 7 8 10

16 [4 points]. Given Problem 15’s jobs and a Preemptive Round Robin scheduler with
quantum Q = 2, what value of the context switch time C provides a utilization of
ρ = 0.8? Recall that the utilization is the fraction of time the CPU spends doing useful
(i.e., application) work.

The utilization ρ is a system-wide metric that equals the fraction of time the CPU spends
doing any application’s job. Say we begin measuring utilization when A starts running, and
stop as soon as D completes, not counting either time 0 or time 10 as context switches. Then
the schedule in Problem 15B contains 10 units of work, and 5 context switches. So:

ρ = 0.8 = 10/(10 + 5C)

8 + 4C = 10

C = 1/2

17 [3 points]. Jobs like those of Problem 15 are run under a real-time scheduler with
strict deadlines. One deadline has been left blank. Write in the earliest deadline that
allows the schedule to be met, and write out the Gantt chart for the resulting schedule
using Earliest Deadline First.

Job A B C D
Service time τ 3 1 2 4

Deadline 4 2 15 10

B A D C
0 1 4 8 10
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V Semaphores

Nick Lachey has some concerns about our semaphore-based implementation of the event
synchronization object. Recall that an event object supports two operations, wait and signal.
wait always blocks the calling thread; signal wakes up one waiting thread, if there are any.
If signal is called on an event that has no waiting threads, then the event’s state does not
change. The semaphore implementation is (in pseudocode):

typedef struct { wait(event_t *e) { signal(event_t *e) {
semaphore_t m = 1; P(e->m); P(e->m);
semaphore_t e = 0; ++e->wc; if (e->wc > 0) {
int wc = 0; V(e->m); --e->wc;

} event_t; P(e->e); V(e->e);
} }

V(e->m);
}

He particularly doesn’t like that signal calls V(e->e) while the mutex is locked, but wait
calls P(e->e) without locking the mutex. He’s been a little distracted in class recently, but he
seems to remember something about “lock ordering”: shouldn’t wait lock the mutex before
accessing e->e? Or maybe signal should access e->e without locking the mutex.

Nick therefore proposes two different fixes to this code. Unfortunately, they’re both wrong.
Your job is to explain how.

Here’s Nick’s first fix; he moves wait’s P(e->e) inside the section where the mutex is held.

wait(event_t *e) { signal(event_t *e) {
W1 P(e->m); S1 P(e->m);
W2 ++e->wc; S2 if (e->wc > 0) {
W3 P(e->e); S3 --e->wc;
W4 V(e->m); S4 V(e->e);

} S5 }
S6 V(e->m);

}

18 [3 points]. True or false: This code leads to deadlock.

True.

19 [7 points]. Give a sequence of steps that demonstrate the race condition or deadlock
by filling out the following table. Mark the point where deadlock occurs or where
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the race condition is triggered. If there is a deadlock, draw a resource model graph
demonstrating the deadlock; if the race condition is not a deadlock, describe it briefly.
You need at least two threads: T1, which is executing wait(e), and T2, which is
executing signal(e). Do not jump steps.

Thread Line e->m e->e e->wc

Initial state 1 0 0
T1 W1 0 0 0
T1 W2 0 0 1
T1 W3 0 0 1 Block on e->e

T2 S1 0 0 1 Block on e->m

e->e

e->m

T1 T2

Here’s Nick’s second fix; he moves signal’s V(e->e) outside the section where the mutex is
held. This requires a bit more rearrangement—but Nick is not so good at rearrangement.

wait(event_t *e) { signal(event_t *e) {
W1 P(e->m); S1 if (e->wc > 0) {
W2 ++e->wc; S2 P(e->m);
W3 V(e->m); S3 --e->wc;
W4 P(e->e); S4 V(e->m);

} S5 V(e->e);
S6 }

}

20 [3 points]. True or false: This code leads to deadlock.

False.

21 [7 points]. Give a sequence of steps that demonstrate the race condition or deadlock
by filling out the following table. Mark the point where deadlock occurs or where
the race condition is triggered. If there is a deadlock, draw a resource model graph
demonstrating the deadlock; if the race condition is not a deadlock, describe it briefly.
You need at least three threads: T1, which is executing wait(e), and T2 and T3, which
are executing signal(e). It is OK to jump steps as indicated.

Thread Line(s) e->m e->e e->wc

Initial state 1 0 0
T1 W1–W4 1 0 1 Block on e->e
T2 S1 1 0 1
T3 S1 1 0 1 Race! Both will signal
T2 S2–S6 1 1 0
T3 S2–S6 1 2 −1

The race condition is that the signal function checks e->wc outside of the induced critical
section. Thus, thread T3 “wakes up” the signal again rather than leaving it unchanged.
This puts the signal in an inconsistent state: e->wc < 0. The next thread to call wait will
immediately return, even though it should block.
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The following code attempts to implement an N-thread barrier synchronization object with
semaphores. Recall that an N-thread barrier has one method, barrier; threads block when
they call barrier until all N threads are blocked on the barrier, at which point all N threads
unblock.

typedef struct { barrier(barrier_t *b) {
semaphore_t mutex = 1; B1 P(b->mutex);
semaphore_t barrier = 0; B2 if (++b->nwait == N) {
int nwait = 0; B3 while (b->nwait-- > 0)

} barrier_t; B4 V(b->barrier);
B5 }
B6 V(b->mutex);
B7 P(b->barrier);

}

But this barrier has a problem: there is a race condition. Here’s a demonstration. Say that
N = 2, and both threads are executing the following code:

L1 printf("%d: before\n", sys_getthreadid());
L2 barrier(b);
L3 printf("%d: between\n", sys_getthreadid());
L4 barrier(b);
L5 printf("%d: after\n", sys_getthreadid());

This code should output something like on the left. Unfortunately, sometimes it will output
something like on the right.

1: before 1: before
2: before 2: before
2: between 2: between
1: between 2: after
1: after
2: after

22 [10 points]. Fix the race condition: write a correct version of barrier. You will
need at least one more semaphore. This problem is hard. Or, for partial credit, give a
sequence of steps that demonstrate the race condition.

See the next page.
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The problem here is that a thread can cycle through the barrier a second time before
all threads blocked on the first barrier have woken up. Here’s an example sequence of steps
demonstrating the race:

Thread Line(s) b->mutex b->barrier b->nwait

Initial state 1 0 0

T1 L1 1 0 0 “1: before”
T1 B1 0 0 0

T1 B2–B5 0 0 1

T1 B6 1 0 1 Release b->mutex
Context switch before B7

T2 L1 1 0 1 “2: before”
T2 B1 0 0 1

T2 B2 0 0 2 Wake up barrier
T2 B3–B4 0 1 1

T2 B3–B4 0 2 0

T2 B5–B7 1 1 0

T2 L3 1 1 0 “2: between”
T2 B1 0 1 0 T2 calls barrier again
T2 B2–B5 0 1 1

T2 B6–B7 1 0 1 T2’s P(b->barrier) succeeds!
(It steals T1’s wakeup opportunity)

T2 L5 1 0 1 “2: after”
T1 B7 1 0 1 Block on b->barrier

The classical solution for this problem introduces two barrier semaphores and alternates
between them. That way, we will never have a situation like the above, where T2’s second
barrier call steals T1’s wakeup opportunity, because T2’s second barrier call will wait on a
different semaphore.

typedef struct { barrier(barrier_t *b) {
semaphore_t mutex = 1; B1 int sense;
semaphore_t barrier[2] B2 P(b->mutex);

= { 0, 0 }; B3 sense = b->sense;
int sense = 0; B4 if (++b->nwait == N) {
int nwait = 0; B5 while (b->nwait-- > 0)

} barrier_t; B6 V(b->barrier[sense]);
B7 b->sense = 1 - b->sense;
B8 }
B9 V(b->mutex);
B10 P(b->barrier[sense]);

}

We also saw a different solution, which ensures that all processes leave the first barrier
before any of them can enter the second. This constrains execution order more than the
two-barrier solution, since processes are released one at a time, rather than in groups, but it
does work!
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typedef struct { barrier(barrier_t *b) {
semaphore_t mutex = 1; B1 int sense;
semaphore_t barrier = 0; B2 P(b->mutex);
semaphore_t outmutex = 0; B3 if (++b->nwait == N) {
int nwait = 0; B4 while (b->nwait-- > 1) {

} barrier_t; B5 V(b->barrier);
B6 P(b->outmutex);
B7 }
B8 b->nwait--; // this thread
B9 V(b->mutex);
B10 } else {
B11 V(b->mutex);
B12 P(b->barrier);
B13 V(b->outmutex);
B14 }

}


