

11/22/17, 7'06 PMExam Solutions

Page 1 of 6http://web.cs.ucla.edu/classes/spring17/cs111/solutions/x1p.html

Exam Solutions
1. Interface Stability
This was discussed in reading section(s) Interface Stability
This was discussed in lecture section(s) 2C,10F

a. consequences of an incompatible ABI change
Application programs purchased/obtained by the customer might stop working after the customer
upgraded to the new OS version.

b. how those problems would be responded to
The Independent Software Vendor would have to discover the new interfaces, modify the program to
work with the new interfaces, rebuild it, and get the new version out to affected customers. They might
also have to distribute different versions of their software to run on different versions of the OS.

c. how clear interface specifications, distinct from implementation, might help

If the interface specifications were well abstracted from the current implementation this reduces the
likelihood that future implementation changes would necessitate incompatible API/ABI changes.

Additionally having a clear written interface specification would raise the visability of the interface,
perhaps making it more obvious to the OS supplier that they were making a change to a committed
interface, and that in doing so they were likely to break existing third party applications. If the
interfaces were not clearly documented, people would be less likely to consider changes to be
important.

2. Resource Convoys
This was discussed in reading section(s) ~A7.3
This was discussed in lecture section(s) 7K

a. A resource convoy is a persistent queue of processes waiting to get access to a popular resource, which
eliminates parallelism, increases delays and reduces system throughput.

b. The key to convoy formation is that processess are no longer able to immediately allocate the required
resource, but are always forced to block (until the resource is freed by the current owner and other
processes in line run). Once this happens, the mean service time can easily exceed the mean inter-
request time, and the line becomes permanent. It may be precipitated by a process becoming bocked or
preempted while holding the resource.

c. Techniques for reducing contention include:
eliminate mutual exclusion by making the resource truly sharable.
reduce mutual exclusion by implementing read/write locks.
reduce contention by breaking up the one resource into a number of sub-resources.
reduce likelihood of conflict by shortening the protected critical section, or using it less often.
reduce the likelihood of preemption by moving potentially blocking operations out of the critical
section,

11/22/17, 7'06 PMExam Solutions

Page 2 of 6http://web.cs.ucla.edu/classes/spring17/cs111/solutions/x1p.html

3. Causes of blocking/preemption
This was discussed in reading section(s) AD4.4,A7.5-7
This was discussed in lecture section(s) 3F,4C

a. A running process might be preempted if its time slice ends, if its priority drops, or if a higher priority
proces becomes runnable.

b. A running process might become blocked if it requests a resource that is not immediately available, or
I/O operation. Also, it is (in some sense) blocked when it is swapped out ... since it cannot run until it is
swapped back in.

4. Evaluating Mutual Exclusion
This was discussed in reading section(s) AD28
This was discussed in lecture section(s) 7D,E

a. The text identified the key criteria as successful mutual exclusion, fairness (vs starvation) and
performance (single processor, multi-procssor). I added to this progress, not blocking for an available
resource and likelihood of avoiding convoys and deadlocks.

b. Spin locks work (modulo interrupt), and are prone to starvation. They are likely to be quite wasteful if
there is contention, but can be very efficient for uncontended use. But they score well on the progress
criterion.

c. Interrupt disables are not usable from user mode and are ineffective against multi-processor
parallelism. They are relatively expensive operations, but relatively fair.

d. Mutexes guarantee mutual exclusion. Mutexes work to ensure mutual exclusion. They are (with
queuing) relatively fair, but there is a race condition where a new locker can get the mutex before the
awakened guy at the front of the queue can do so. But this satisfies the progress criterion. The system
call, as well as blocking and dispatching are all relatively expensive operations, but blocking is usually
much more efficient than spinning.

5. DLLs vs Shared Libraries
This was discussed in reading section(s) Linking & Libs
This was discussed in lecture section(s) 3Y

a. The major capabilities that come with DLLs are
the ability to open and load (at run-time) modules that did not exist at link time,
deferring loading until the modules are actually called,
the ability to perform per-module initialization and shut-down
the ability to resolve references from the loaded module back into the main program.

b. Examples of the exploitation of each capability are
explicit selection and loading is exploited by browser plug-ins which can be obtained long after
the browser
deferred binding can significantly improve performance (by reducing work at initial program
load time) and make it possible for a program to get the benefits of modules that become

11/22/17, 7'06 PMExam Solutions

Page 3 of 6http://web.cs.ucla.edu/classes/spring17/cs111/solutions/x1p.html

available after the program starts. This can have a significant performance impact if many plug-
ins might be used, but actual use is few and seldom.
per module initialization could be used to allocate and initialize private data, register instances,
and other complex starup (or shut-down). Device drivers, for instance, require both.
the ability to make calls back into the containing program is important if it provides rich services
for the plug-in. Here, again, device drivers (which makey heavy use of DKI services) are a very
good example.

c. The big extra mechanism that DLLs require is a run-time loader. Why? Because they have to be loaded
at run time! They also require a linkage editor that is capable of generating Procedure Linkage Table
entries ... but this is a much simpler thing.

6. Messages vs shm IPC
This was discussed in reading section(s) mmap(2),send(2),recv(2)
This was discussed in lecture section(s) 7A

a. The primary advantage of shared memory over message IPC is performance.
b. Shared memory IPC allows large amounts of data can be transferred, at memory speed, with ordinary

user-mode instructions, without the need to make expensive calls to operating system.
c. The biggest advantage of messages is that they can easily be sent to processes on other machines,

whereas shared memory can only be used between processes on a single machine (it can be turned into
messages, but doing so sacrifices its performance advantages). This gives us much greater flexibility in
how we structure our applications and systems.

Messages sent through the operating system can have authenticated sender identity, and the OS can
ensure the integrity and privacy of the message contents. This is because the messages are bufferred in,
and delivered by the OS ... which does not happen with shared memory.

Also options like synchronous receive and confirmed delivery may be offered with message system
calls, but since applications implement their own shared memory IPC, they would have to provide
these services themselves.

7. free lists
This was discussed in reading section(s) AD17.2
This was discussed in lecture section(s) 5C,5G

a. In variable-partition allocation we need to know the size, locations, and neighbors of each chunk. In
fixed partition allocation, all of these are constants.

b. The free list data structures must be designed to optimize:
searching for a piece of desired size.
breaking a large piece into smaller pieces.
coalescing neighbors back together.

c. we discssued several types of diagnostic information that could be added to free list descriptors and
chunks:

if we keep allocated memory on a list (as well as free memory) we can audit that list to find

11/22/17, 7'06 PMExam Solutions

Page 4 of 6http://web.cs.ucla.edu/classes/spring17/cs111/solutions/x1p.html

memory that has not yet been freed, and perhaps detect memory leaks.
address of the allocater (and perhaps time of allocation. This can be recorded at allocation time.
If a subsequent audit finds this chunk to be lost, we will know who allocated it (and hence what it
was used for).
we can put pattern-data guard-zones before and after each chunk (at allocation time) and do
periodic audits to see that they still contain the correct patterns. This will detect bufer under- or
over-run.

8. prod/cons w/sems
This was discussed in reading section(s) AD31.4
This was discussed in lecture section(s) 7I

This application probably calls for two different semaphores:

a. a work semaphore to allow back-end threads to await requests, The front-end would V the work queue
whenever a new request was added to it, and the back-end threads would P the work queue to await
work.

b. a mutex semaphore to serialize access to the shared queue. All threads (front-end and back-end) would
have to P to lock the mutex, and V to release it when adding or removing requests to/from the queue.

The trick is to avoid deadlock (holding one semaphore and then blocking on the other). Nobody holds the
mutex while doing a P on the work queue.

 server:
 P(mutex)
 append to work queue
 V(mutex)
 V(work queue)

 worker:
 P(work queue)
 P(mutex)
 take item off queue
 V(mutex)

Note that a two-semaphore solution invites deadlock (much like we saw in the semaphore producer/consumer
solution we examined in class. I address this by avoiding hold-and-block on the mutex (release the mutex
before P'ing the work semaphore).

9. Page Fault process
This was discussed in reading section(s) AD21.3-5
This was discussed in lecture section(s) 6C

a. the trap and low level handling:
process reference address that is not yet mapped in

11/22/17, 7'06 PMExam Solutions

Page 5 of 6http://web.cs.ucla.edu/classes/spring17/cs111/solutions/x1p.html

CPU generates a page fault exception and traps into the OS
first level handler is selected from an in-memory trap vector
the PC/PS at time of trap is pushed onto the supervisor mode stack
first level handler saves registers and forwards to 2nd level handler.

b. software looup, selection, I/O:
page fault handler determines that address does indeed refer to a valid, but paged out, page in the
process's address space.
a free page frame is found, perhaps requiring some other page to be written out
I/O request is scheduled to bring in the required page, and we await completion
process's page table is adjusted to show location of newly fetched page.

c. return/resmption::
back-up the failed instruction
return through the first level handler, which will restore the saved registers.
return to usermode with a return from trap instruction that will restore the saved PC/PS.
resumed process will re-attempt the instruction that had page faulted.

10. using Condition Variables
This was discussed in reading section(s) AD30.1
This was discussed in lecture section(s) 7F,7I

a. The mutex prevents us from missing a wake-up because the condition was signaled, after we checked
it, but before we went to sleep.

b. Sample signal and wait code is:

 waiter:
 pthread_mutex_lock(&mutex);
 while (!condition)
 pthread_cond_wait(&cv, &mutex);
 pthread_mutex_unlock(&mutex);

 signaler:
 pthread_mutex_lock(&mutex);
 condition = True;
 pthread_cond_signal(&cv);
 pthread_mutex_unlock(&mutex);

Note that the mutex is held whenever the condition is maniuplated or a call is made to either signal or
wait.

c. The OS will release the mutex after blocking the process (in a call to pthread_cond_wait) and reacquire
the mutext before returning to the user-mode process.

d. If the waiter released the mutex prior to calling pthread_cond_wait, the signal could be sent before we
went to sleep, and we would have missed the wake-up.

XC. memory allocation mechanisms

11/22/17, 7'06 PMExam Solutions

Page 6 of 6http://web.cs.ucla.edu/classes/spring17/cs111/solutions/x1p.html

This was discussed in reading section(s) AD14
This was discussed in lecture section(s) 5B

Note: this was intended to be hard question on this exam, requiring more than mere recollection. Only part
(a) was answered in class. Parts (b) and (c) require you to to contemplate how the mechanisms might be used.

a. Stack allocated storage is automatically deallocated when the allocating block exits. Heap storage
persists after exiting the block, until it is explicitly freed.

b. The sbrk(2) system call can extend or shink the data segment but only at its end. We cannot free
individually allocated chunks from the middle.

c. Two likely applications are:
allocating very large blocks of memory in their own segments ... where the malloc arena adds
little value
creating multiple malloc arenas (for different clients) each in its own segment).

The first two points were discussed in class. The last point calls for imagination, which is what made this an
extra credit problem.

