
CS111 Final (part 1)
Nikhil Bhatia

TOTAL POINTS

96 / 100

QUESTION 1

Necessary Conditions for Deadlock 10 pts

1.1 4 necessary conditions 2 / 2

✓ - 0 Correct

1.2 1st condition and attack 2 / 2

✓ - 0 Correct

1.3 2nd condition and attack 2 / 2

✓ - 0 Correct

1.4 3rd condition and attack 2 / 2

✓ - 0 Correct

1.5 4th condition and attack 2 / 2

✓ - 0 Correct

QUESTION 2

Write-Through vs Write-Back caches 10

pts

2.1 What write-through optimizes 2 / 2

✓ - 0 Correct

2.2 Why we must write-through 2 / 2

✓ - 0 Correct

2.3 Write-back vs write-through 2 / 2

✓ - 0 Correct

2.4 Advantage of write-back 2 / 2

✓ - 0 Correct

2.5 problem of write-back 2 / 2

✓ - 0 Correct

QUESTION 3

Copies and Links 10 pts

3.1 link vs copy 2 / 2

✓ - 0 Correct

3.2 links and unlinks 2 / 2

✓ - 0 Correct

3.3 symbolic link 2 / 2

✓ - 0 Correct

3.4 what can a symlink do 3 / 4

✓ - 1 Second Difference is vague.

QUESTION 4

Performance problems and Diagnosis 10

pts

4.1 2 common performance problems 4 / 4

✓ - 0 Correct

4.2 why each might only show up at scale 2
/ 2

✓ - 0 Correct

4.3 testing methodology to discover 2 / 2

✓ - 0 Correct

4.4 diagnostic methodology to isolate 2 / 2

✓ - 0 Correct

QUESTION 5

Journaling and Logging file systems 10

pts

5.1 purpose of a journal 2 / 2

✓ - 0 Correct

5.2 logging fs vs journaling 1 / 1

✓ - 0 Correct

5.3 which does fewer writes 0 / 1

✓ - 1 Not correct

5.4 index value & contents 2 / 2

✓ - 0 Correct

5.5 index recovery 4 / 4

✓ - 0 Correct

QUESTION 6

Cryptographic Hashes 10 pts

Nikhil Bhatia

6.1 characteristics of cryptographic hash 4 /

4

✓ - 0 Correct

6.2 validating crypto-hashed password 2 / 2

✓ - 0 Correct

6.3 protection against dictionary attack 0 / 1

✓ - 1 Not correct

6.4 message authentication 2 / 2

✓ - 0 Correct

6.5 how to defeat would-be forgers 1 / 1

✓ - 0 Correct

QUESTION 7

Distributed Locking 10 pts

7.1 why dist locking is hard 2 / 2

✓ - 0 Correct

7.2 how to address that problem 3 / 3

✓ - 0 Correct

7.3 new failure mode in dist locking 2 / 2

✓ - 0 Correct

7.4 how to address that problem 3 / 3

✓ - 0 Correct

QUESTION 8

Unforgeable Capabilities 10 pts

8.1 why unforgeable capabilities 2 / 2

✓ - 0 Correct

8.2 using cryptography to make them so 2 /

2

✓ - 0 Correct

8.3 creating an encrypted/signed capability
1 / 2

✓ - 1 vague about what is encrypted with which keys

8.4 validating an encrypted/signed
capabilitiy 2 / 2

✓ - 0 Correct

8.5 why hard to forge 2 / 2

✓ - 0 Correct

QUESTION 9

Consistency and Persistence 10 pts

9.1 ACID acronym 4 / 4

✓ - 0 Correct

9.2 Posix read-after-write - define 2 / 2

✓ - 0 Correct

9.3 Flush-on-close: what and why 2 / 2

✓ - 0 Correct

9.4 Flush-on-close vs Read-after-write 2 / 2

✓ - 0 Correct

QUESTION 10

Eventual Consistency 10 pts

10.1 Define Eventual Consistency 2 / 2

✓ - 0 Correct

10.2 Why it might be faster 2 / 2

✓ - 0 Correct

10.3 Why it might be higher availability 2 / 2

✓ - 0 Correct

10.4 Why does it make sense in a cloud 2 / 2

✓ - 0 Correct

10.5 Dealing w/inconsistency 2 / 2

✓ - 0 Correct

Page 2

Nikhil Bhatia

CS111 Final (part 2)
Nikhil Bhatia

TOTAL POINTS

88 / 199

QUESTION 1

User Mode Threads 33 pts

1.1 Data Structures 0 / 8

 - 0 Correct

✓ - 8 Wrong/No answer

 - 2 Descriptor id, scheduling info, pointer to stack

allocated by thread_create function and deallocated

by thread_destroy function

 - 5 Thread stack allocated by thread_create

function and deallocated by thread_exit function.

Queue for runnable threads

 - 3 Thread stack allocated by thread_create

function and deallocated by thread_exit function,

Descriptor id

 - 6 Descriptor, id, scheduling info, pointer to stack,

Thread stack allocated by thread_create function and

deallocated by thread_exit function

 - 1 Queue for runnable threads, scheduling info,

1.2 Methods 0 / 14

✓ - 14 Did not answer / Wrong answer

 - 0 Correct

 - 12 thread_create, dispatcher, thread_yield,

thread_block, thread_unblock, thread _exit,

thread_destroy

 - 9 thread_create, dispatcher, thread_yield,

thread_block, thread_unblock, thread _exit,

thread_destroy

 - 5 thread_create, dispatcher, thread_yield,

thread_block, thread_unblock, thread _exit,

thread_destroy

 - 6 thread_create, dispatcher, thread_yield,

thread_block, thread_unblock, thread _exit,

thread_destroy

 - 13 thread_create, dispatcher, thread_yield,

thread_block, thread_unblock, thread _exit,

thread_destroy

 - 10 thread_create, dispatcher, thread_yield,

thread_block, thread_unblock, thread _exit,

thread_destroy

1.3 Preemptive Schedulng 0 / 5

 - 0 Correct

✓ - 5 Wrong / No answer

 - 2 Set an alarm while dispatching the thread,

catch the result signal, call thread_yield on behalf of

preempted thread.

 - 3 Set an alarm while dispatching the thread,

catch the result signal, call thread_yield on behalf of

preempted thread.

1.4 Mutexes 0 / 6

 - 0 Correct

✓ - 6 Wrong/no answer

 - 3 Use atomic instructions to check/seize locks.

Use thread_block to block a thread awaiting a mutex

and thread_unblock to wake up a thread when the

awaited mutex became available.

 - 4 Use atomic instructions to check/seize locks.

Use thread_block to block a thread awaiting a mutex

and thread_unblock to wake up a thread when the

awaited mutex became available.

QUESTION 2

Dynamic Equilibrium 33 pts

2.1 The Two Forces 4 / 5

 - 0 Correct

 - 5 Not Answered.

 - 4 Click here to replace this description.

 - 3 Click here to replace this description.

 - 2 Click here to replace this description.

✓ - 1 Click here to replace this description.

2.2 A larger working set 5 / 6

Nikhil Bhatia

 - 0 Correct

 - 6 Not Answered

 - 5 Click here to replace this description.

 - 4 Click here to replace this description.

 - 3 Click here to replace this description.

 - 2 Click here to replace this description.

✓ - 1 Click here to replace this description.

2.3 A smaller working set 6 / 6

✓ - 0 Correct

 - 6 Not Answered.

 - 5 Click here to replace this description.

 - 4 Click here to replace this description.

 - 3 Click here to replace this description.

 - 2 Click here to replace this description.

 - 1 Click here to replace this description.

2.4 More competing processes 6 / 6

✓ - 0 Correct

 - 6 Not Answered.

 - 5 Click here to replace this description.

 - 4 Click here to replace this description.

 - 3 Click here to replace this description.

 - 2 Click here to replace this description.

 - 1 Click here to replace this description.

 - 0 Click here to replace this description.

2.5 Constructiveness? 4 / 4

✓ - 0 Correct

 - 4 Not Answered.

 - 3 Click here to replace this description.

 - 2 Click here to replace this description.

 - 1 Click here to replace this description.

2.6 Another example 6 / 6

✓ - 0 Correct

 - 6 Not Answered.

 - 2 Click here to replace this description.

 - 3 Click here to replace this description.

QUESTION 3

Critical Sections 33 pts

3.1 Circle the Critical Sections 0 / 18

 - 0 Correct

 - 4 enqueue

 - 4 getnext

 - 4 dequeue

 - 4 suspend_req

 - 2 No extra places

✓ - 18 not attempted

3.2 Protection 0 / 15

 - 0 Correct

✓ - 15 not attempted

 - 2 coarse grained locking

 - 4 missed transaction/deadlock in suspend_req

QUESTION 4

Deadlock Problems 33 pts

4.1 Distributed Lock Manager 8 / 8

✓ - 0 Correct

 - 1 did not honor problem constraints

 - 1 vague/confused

 - 1 weak justification

 - 2 ineffective/impractical

 - 1 not robust in face of node failures

 - 8 n/a

4.2 Device Driver Queue 4 / 8

 - 0 Correct

✓ - 1 vague/confused

 - 2 no protection against MP parallelism

✓ - 1 no protection against interrupts

✓ - 1 no protection against int/deadlock

✓ - 1 inadequate deadlock protection

 - 1 terrible performance

 - 2 no protection against deadlock

 - 8 n/a

4.3 Message Buffers 3 / 8

 - 0 Correct

✓ - 1 weak justification

✓ - 2 misunderstood problem

✓ - 2 vague/confused solution

 - 2 did not prevent deadlocks

 - 2 created bottleneck

 - 8 n/a

4.4 Locks and Blocking Requests 7 / 8

 - 0 Correct

✓ - 1 vague/confused solution

 - 2 misunderstood problem

 - 2 violated problem constraints

 - 2 failed to prevent deadlock

 - 8 n/a

4.5 freebie 1 / 1

✓ - 0 Correct

 - 1 n/a

QUESTION 5

Copy on Write File Systems 33 pts

5.1 Define 10 / 10

✓ - 0 Correct

 - 2 change pointers to point to new info.

 - 10 Wrong/ No answer;

Correct answer: Don't overwrite old info, new copy of

updated info, change pointers to point to new info.

 - 7 Don't overwrite old info, change pointers to

point to new info.

 - 8 Don't overwrite old info, new copy of updated

info, change pointers to point to new info.

 - 4 Don't overwrite old info, change pointers to

point to new info.

5.2 Robustness 5 / 5

✓ - 0 Correct

 - 5 Wrong/No answer

 - 2 Click here to replace this description.

 - 4 Click here to replace this description.

5.3 Space Saving 3 / 3

✓ - 0 Correct

 - 3 Wrong/No answer

Correct: A C-o-w clone allows multiple files to share

all the same data blocks and only creates new copies

when a change is made

 - 2 A C-o-w clone allows multiple files to share all

the same data blocks and only creates new copies

when a change is made

5.4 Enabled Functionality 5 / 5

✓ - 0 Correct

 - 5 Wrong/No answer

 - 3 Since old copies are still available, user can see

older versions of files as well.

 - 2 Since old copies are still available, user can see

older versions of files as well.

5.5 The problem 5 / 5

✓ - 0 Correct

 - 5 Wrong/No answer

Correct: Reclaiming the space occupied by old copies

as old copies are not overwritten

 - 4 Click here to replace this description.

 - 1 Click here to replace this description.

 - 2 Click here to replace this description.

5.6 The solution 5 / 5

✓ - 0 Correct

 - 5 Wrong/No answer Correct: Suggest a way for

garbage collection of older versions of a file

 - 2 Click here to replace this description.

 - 3 Click here to replace this description.

QUESTION 6

A New Service 33 pts

6.1 Why RESTful 0 / 10

 - 0 Correct

 - 1 not a significant benefit

 - 2 closely related benefits

 - 2 not a recognized benefit

 - 1 weak justification

 - 2 no justification

 - 2 definition is not justification

 - 5 one good answer

✓ - 10 n/a

6.2 Authentication/Authorization 0 / 9

 - 0 Correct

 - 3 does not honor problem constraints

 - 3 vague/confused

 - 3 impractical/ineffective

✓ - 9 n/a

6.3 How Owner Obtains 0 / 3

 - 0 Correct

 - 1 does not honor problem constraints

 - 1 ineffective

 - 1 vague/confused

✓ - 3 n/a

6.4 How Owner Authorizes Others 0 / 3

 - 0 Correct

 - 1 does not honor problem constraints

 - 1 vague/confused

 - 1 ineffective/impractical

✓ - 3 n/a

6.5 Multi-Level Access Control 0 / 3

 - 0 Correct

 - 1 does not honor problem constraints

 - 1 vague/confused

 - 1 ineffective/impractical

✓ - 3 n/a does not respond to question

6.6 Privacy and Integrity 0 / 5

 - 0 Correct

 - 1 RESTful protocols are layerable: just use SSL

 - 1 vague

 - 1 impractical

 - 1 does not honor problem constraints

 - 1 ineffective

✓ - 5 N/A

QUESTION 7

7 Freebie 1 / 1

✓ - 0 Correct

Page 4

Nikhil Bhatia

