Final Examination

CS 111, Winter 2002
3/14/2022, 8 — 11am

» et -
=3 & . 3=

1. Deadlock. Consider a system with four processes P1, P2, P3, and P4, and two
resources, R1, and R2, respectively. Each resource has two instances. Furthermore:
- @ allocates an instance of[R2, and requests an instance of R1;
- P2 allocates an instance of R1, and doesn’t need any other resource;
P3 allocates an instance of R1 and requires an instance of R2;
P4 allocates an instance of R2, and doesn’t need any other resource. (15 points, 5
points each question)

(a) Draw the resource allocation graph
Re
@
N
ccte @ P allwote

P3
m

(b) Is there a cycle in the graph? If yes, name it.

Yes thare 1S « CJ(/&..

)

P r??use'f B, R, allocae to Pﬁ'

P Nflus{ Re , R, allecate o Py

(c) Is the system in deadlock? If yes, explain why. If not, give a possible sequence of
executions after which every process completes.

A(ij;\ There is. o cﬁya in o Graphfor PR PR,
Loken P oand Py 7‘:‘)\4’3/\15, thae M be availaply, P,

*f'\)/ P, and Mwla«lv(a -P;_ d\y F;_
Orclor: @ Py, py exeakef @D @ P, P eveante .

2. File system reliability. Professor Harry writes the following program for grading
students’ projects. Per-project grades are stored in a set of input files, and the
following program’s goal is to compute a final course grade for each student and
write it to file name.grade. (3 points)

main():

remove all files ending with ”.grade”
for each student name s in alphabetical order:
read assignment scores for student s
calculate final grade filename = s + ”.grade” fd =
create(filename)
write(fd, final grade, ...)
close(fd)
printf(”finished with %s\n”, s)

Harry uses a laptop with a journaling file system in a mode that the journal contains
both file content and the metadata. He runs the following command:

program | cat

“u_n

Harry sees “finished with x” for all students with names up through “p”, and then his

laptop crashes. Harry reboots his laptop.

Harry thinks he may have to re-run the program for some or all students. Explain what
guarantees he has about which final grades will be on disk after the restart.

The })rl'i‘t‘]L () Aere occurs afrec the stuclent’s
fraoke Ip wiitten o clisk. It s commitied message
Since —}Mrr] 5€q s "j\‘m'sha(wity pt "

"s 8aruM“Q¢o(+hat oMM studa—t wp o P

15 on ousk .

3. Explain copy-on-write and give at least one instance when it might be useful. (2
points)

Ca-py on Write s fhad ovu.é} rr\a/&/\é, « copy of
a file o s moctified. It cun fe applicel 4o
Nuy/ P/Ccu.es. E~3- Bﬂdzu{) Shap shet- Moy Use oW fo

Save Spae - (No meod 4 Cpy @enfil) E.g forkO also
USe w4 Sove. Some Space

4. Process and Thread: Consider the following C program. Assume that all
system calls succeed. (20 points)

1 void* funcl(void *args) {

2 printf("Yellow: %d\n",*((int*)args));

3 exit(9);

4 }

5

6 void* func2(void *args) {

7 printf("Red: %d\n", ((int*args)[e]);

8 return NULL;

9 ¥

10 int main(void) {

11 pid_t pid; pthread_t pthread; int status; //declaring vars
12 Lint fd = open("cs11l.txt", O_CREAT|O_TRUNC|O_WRONLY, 0666) ;
13 int *subaru = (int*) calloc(1, sizeof(int)); subaru =o .
14 printf("Main: %d\n", *subaru); Masn : O .
15 if(pid = fglk_&)) { @o\ .Pfd-

16 *subaru = 1337;

17 pid = fork();

18 }

19 if(lpid) { prot >

20 pthread_create(&thread, NULL, func2,

21 (void*) subaru);

22 } else {

23 for(int i = 0; i < 2; i++)

24 waitpid(-1, &status, 0);

25 pthread_create(&thread, NULL, funcil,

26 (void*) subaru);

27 }

28 pthread_join(pthread, NULL);

29 if(*subaru == 1337)

30 dup2(fd, fileno(stdout));

31 printf("All done!\n");

32 return 9;

33 }

(a) Including the original process, how many processes are created? Including
the original thread, how many threads are created? (2 points)

Line (3,17 creates o mrew ProRssSes.

l’\C{UCL{i‘»} J m;iﬁfrd ong ,)-{-1 :/‘é PN(QSSO_S.

& Each proass crede oo mow throad,

lno&ww\OL ovignad one 2 1] = 4 Threads .

(b) Provide all possible outputs in standard output. If there are multiple
possibilities, put each in its own box. You may not need all the boxes. (10

points)
Possibility 1: Possibility 2: Possibility 3: Possibility 4:
Main: Main 20
Ded 0O | Roed :133)
Ped : 1237 Dol
Ye(fow : 337 Ye((5w <1337
All ope ! All dsma)

(¢) Provide all possible contents of cs111.txt. If there are multiple possibilities,
put each in its own box. You may not need all the boxes. (2 points)

Possibility 1: Possibility 2: Possibility 3: Possibility 4:
A otome !
Al done !
Al oe
(d) Suppose we deleted line 29, would the contents of ¢s111.txt change? If Al o
they do, how? (3 points) ALl olira

Yes .t wowld. subwapu s NOT 1337 -/-w one process

(ast,
In Fhet case, +ho process will move Us

53-{0{«%«% to
Tha lost
CSU- txt as weld. Stdowt will be mived wikh Sy vt R M.

(e) What if, in addition to doing the change in part (d), we also move line 12
(where we open the file descriptor) between lines 18 and 19? What would
csl11.txt look like then? (3 points)

In 4s Case, the er csul et
Prooess i/\oaw'duwu}, 7La~e o YuaIne (,.Jw{w-f Switch an(d my ﬁ%f

will be Opereof by each

Slwer , but ke 74‘/9 Shoulef r\’v‘{‘\‘7 be the same awith 3
ol clone,

5. TLB. Consider the following piece of code which multiplies two matrices:

int a[1024][1024], b[1024][1024], c[1024][1024];

multiply ()
{

unsigned i, j, k;

for(i = 0; i < 1024; i++)

for(j = 0; j < 1024; j++)
for(k = 0; k < 1024; k++)
cl[il[j] += a[i,k] * b[k,j];

}

Assume that the binary for executing this function fits in one page, and the stack also fits
in one page. Assume further that an integer requires 4 bytes for storage. Compute the
number of TLB misses if the page size is 4096 and the TLB has 8 entries with a
replacement policy consisting of LRU. (10 points)

For eoch page. 4096 Byle /4.&{& - o024 im‘e&p,r.s.

s Stoes. 71~e»r~e7‘r-e_ w kon opoc e\cecu*f'fﬂa,,

ali, k1l and cli,j1 will be
on "H’s pasge wrless ¢ is c/\al\;,ec()
C/“’"é’;n}
{)Lk;’il will be « Mmiss every Hme , sSince ks % _

C[i,j l : wmss (024 +imeg — 3
‘ 204§ t (004) Frmes

al1,¥ : miss (0r¢ Eimes.

b Lk.j1 - Migq ((ol‘l)S &imes .

6. Monitor and Condition Variable. In this problem, you will implement a monitor to
help a set of drivers (modeled as threads) synchronize access to a set of five keys and a
set of ten cars. Here is the problem setup:

— The relationship between the keys and the cars is that key 0 operates cars 0 and 1, key
1 operates cars 2 and 3, etc. That is, key i works for cars 2i and 2i + 1.

—If a key is being used to operate one car, it cannot be used to operate the other.

— A driver requests a particular car (which implies that the driver needs a particular key).
However, there may be many more drivers than cars. If a driver wants to go driving but
cannot get his desired car or that car’s key, it waits until the car and key become
available. When a driver finishes driving, it returns his key and notifies any drivers
waiting for that key that it is now free.

— You must allow multiple drivers to be out driving at once, and you must not have busy
waiting or spin loops.

— Note: there could be many, many instances of driver() running, each of which you can
assume is in its own thread, and all of which use the same monitor, mon.

On the next page, fill in the monitor’s remaining variable(s) and implement the monitor’s
take_key()and return key() methods. (20 points)

typedef enum {FREE, IN_USE} key_status;

class Monitor {

public:
Monitor () { memset(&keys, FREE, sizeof(key_status)*5};
“Menitor{} {}
vold take_kKey{int desired_car);
vold return_key{int desired car};

private:
Mutex mutex;
key_status keys[5]; =¥
/¥ YOU MUST ADD MATERIAL BELOW THIS LIKE #)
zaeuf-f 'z 37,

B L
¥ ik guacel;
void driver(thread_id tid, Monitors mon, int desired_car) {
/% you should not modify this function */
moen—->take_key({desired_car);
drive{(};
mon—>return_key{desired_car);

¥

void Momitor::take key(int desired_car) {
/% YOU MUST FILL IN TEIS FUNCTIOK. Kote that the argument refers
to the dezired car. =/

key = desired- car /2; While (tost-and.set C-l‘\«‘s.guard)) 73
this. mutex . Lock(d;
it (keys Lkey] == IN-USEDf +his-nactex. unlockl)

enquie Cohis giggsolf 55 +his > grord =0, VGTod>, P

Jeses
thiskeys Lkey] = IN-USE; {his> Guord =0,
hissMmutex. un lock{);

void Monitor: :return_key{int desired_car) {

/% YOU MUST FILL IK THIS FUKCTIOK. Note that the argument refers
%o the desired car. =/

k= clesjred-cor /2

While (test. and- set (Hhis. Zuowd)) i
'{MS. naatey- Jockt) ﬁ% g‘

i C! queue _ em‘pﬁ/ (this »
ake oy (oequede (£his "7"‘13) ;
:) else f
| keyslk] = FREE,

¥

‘st.smrd = O

/

This - mader - om [ocke();

7. Disk. Consider a disk with the following characteristics:
— The disk rotates at 12,000 RPM (rotations per minute)
— The disk has 10 platters
— Each sector is 512 bytes

— There are 1024 sectors per track (we are ignoring the fact that the number of sectors
per track varies on a real disk) '

— There are 4096 tracks per platter
— The track-to-track seek time is O milliseconds

— If the disk head has to seek more than a single track, the seek time is given by 1 +t
*.003 milliseconds, where t is the number of tracks that the disk is seeking over.

— Ignore the time to transfer the bits from the disk to memory; that is, once the disk head
1s positioned over the sector, the transfer happens instantaneously

(a) What is the storage capacity of the disk in bytes or gigabytes? Explain briefly. (5 points)

SeC'hY- 'tfaCk » . by-lej
(024 - ¢ 4096 — ¢« (0 P(m‘,(%qs/(£ /seo{w.

(b) What is the sequential transfer bandwidth, expressed in bytes/second or
megabytes/second? Explain briefly. (5 points)

[2000 RPM - 1024 Sector /track - S byte / sectey - b_‘_M“"
0S

8. File System. As discussed in our lectures, creating a new file in a directory needs to
update 4 blocks under Linux ext2: the inode bitmap, the file inode, the directory inode,

and the directory’s data block. Assume the directory inode and the file inode are in
different on-disk blocks. (20 points, 4 points for each question)

Part I: Assume we perform neither journaling nor FSCK. What would happen if a crash
occurs after only updating the following block(s)? Choose from the following answers
and explain the reasons:

— 1o inconsistency

— wasted data block/inode

— multiple file paths may point to the same inode
— point to garbage data

— multiple problems listed above.

(a) Bitmap ‘
inocde
In wﬂSiSWL%«J : %HMP Says @3 allocete o

buj o—"‘he(P{CLULS o 7\0"’ :

(b) Directory inode and Directory data

Poinds fo G;wba&,e ola{a .
Inomn Sisferv“ :
Ij we trust Pi rec;{uv-ui Dot [reasa Pcm\JfS o un cltclﬂaﬁd{ ZMDOQ,

to
PartIl: we gef 84‘(5@5& It's incosistent with Bfmaf 0.

Let us add a simple implementation of data (including data and metadata) journaling to
our file system and perform the same file creation as Part I. Assume each transaction
on the journal starts with a header block and finishes at a commit block. If the system
crashes after the following number of blocks have been synchronously written to disk
(including the journal and real FS), what state will the FS be in after the reboot? What
can we do to recover?

(a) 1 disk write (hint: just the transaction header block is written to the journal)
1t s Ur\b\, wrilen fo Jouraa bust M= g NOT iy
ocfual —fll e Sy Stem . We nred o recwev ewerypimg .

BQCGILSQ even the Jonvmal s Masowadete Un comuution

S will be ot

an
Sing Journall writes

bvf'v\ FS writes. We need to e -run He WA”&-

Pr"@"‘"\ ‘/‘0 re covkr +Ae Jl%ma;(fore isnt uSe/ftJ

7LW re cver .

I+s in old statws

[¥ !
(b) 8 disk writes (hint: transaction header, plus 4 blocks, plus commit block to journal,
plus two data blocks to the real FS)
L

Since med conf aing commit /A«Cocﬁ, Ut's a ommifted Joam

However , wri-l-ir\é, fo the actuad FS is not Cowtv&'/\%(.

We geoaqse the transaction IS pof cleared .

We oy 7Lo'(,(;w the Journad

Committed ~ message Tt¢

and recove, Using Ho

moold Stofus.

(c) 11 disk writes (hint: you also have to clear the transaction after writes to the real
FS finish)

Transe chion Meacler + 4blocks 7 commit block

1t 4 deD\ l)[oo/zﬁ -+ C(earh\fy transaction >= || .

Sine Ahe 30‘""“’&"9 Aas entered The 31‘“5& 70

J‘Ourhd clear , the FS write nmust be completeq

There is I\.O’H\-I"LOL. e cled 7’»« que}.

s in New Stafus

