
Midterm Exam Fall ’21
CS 111: Operating System Principles

Instructor: Jon Eyolfson

Duration: 1 hour 50 minutes
October 26, 2021

Name

Student ID

This is a closed book exam. You are only permitted a pencil or pen.
Answer the questions directly on the exam.

If in doubt, write your assumptions and answer the question as best you can.
There are 8 numbered pages (page 8 is blank if you need extra room).

The pace of the midterm is approximately one point a minute.
There are 100 total points.

Good luck!



(5 points) Explain the concept of virtualization and how it applies to operating systems.

(5 points)What service would you find in a monolithic kernel, but not in a microkernel?

(5 points)What should you use to monitor all system calls a process makes?

(5 points) If you include a C struct in your library’s header, why shouldn’t you ever change it?

(5 points)What are the two responsibilities of pid 1 (init)?

(5 points)Why do we not use the least recently used algorithm to do page replacement in practice?

1



(20 points total) Process API.

Consider the following code:

#include <sys/wait.h>
#include <unistd.h>

int main() {
pid_t pid1 = fork();
pid_t pid2 = fork();

if (pid1 > 0) {
int wstatus;
wait(&wstatus);

}

if (pid2 > 0) {
int wstatus;
wait(&wstatus);

}

return 0;
}

Recall that fork creates a new process, that is a copy of the current running process. It returns a process
ID, pid. If pid is greater than 0 then it represents the process ID of its new child process. If pid is equal
to 0 then this process is the new child process. We’ll assume these are the only possibilities, fork never
generates errors. The wait function waits until one of its child processes terminates, and reads its status
information so the kernel can remove its resources. We can assume that all processes exit normally. We
don’t need to access the information in wstatus, so for this question it’s irrelevant. We also don’t check
the return value, so we don’t need to know it for this question.

2



We compile the program on the previous page, and execute it as a new process, pid 100. Again, we
assume that fork does not fail, and all processes that terminate exit normally.

(2 points) How many new processes get created (exclude pid 100)?

(8 points) Does pid 100, or any of its children create any orphan processes? Why?

(10 points) There’s an issue with this program. When you run it, it seems fine, but that’s because we don’t
check for any errors. What is this issue, and how would you fix it? (You can just describe what you’d need
to do to fix it, instead of writing code.)

3



(20 points total) Basic IPC.

Consider the following code:

#include <sys/wait.h>
#include <unistd.h>

int main() {
int fd[2];
pipe(fd);

pid_t pid = fork();
if (pid == 0) {
/* first child */
dup2(fd[1], 1);
close(fd[1]);
execlp("ls", "ls", NULL);

}

pid_t pid = fork();
if (pid == 0) {
/* second child */
dup2(fd[0], 0);
close(fd[0]);
execlp("wc", "wc", NULL);

}
else {
close(fd[0]);
close(fd[1]);
int wstatus;
wait(&wstatus);
wait(&wstatus);

}

return 0;
}

Recall that pipe creates two file descriptors: fd[0] and fd[1]. You can only write data to fd[1] and only
read data from fd[0]. The close function takes a file descriptor as an argument and closes it, allowing
the kernel to clean up the entry. The dup2 function copies the file descriptor in the first argument to
the file descriptor in the second argument. If the file descriptor represented by the second argument
already exists, it’s closed before the copy. The execlp function takes a string, representing an executable
name, and any number of string arguments terminated with a null pointer. The function searches for the
executable and if found, replaces the currently running process with that one (also passing the arguments
provided). Assume that no functions ever fail.

4



We compile the program on the previous page, and execute it as a new process. Again, we assume fork,
pipe, dup2, and close do not fail, and all processes that terminate exit normally.

(10 points) Explain how ls and wc communicate using the pipe. You should explain it in terms of each
process, and the read and write system calls (both functions operate on a file descriptor and a sequence
of bytes).

(10 points)When you run this program, it looks like it hangs. Why? What would you have to do to fix it?

5



(20 points total) Scheduling.

Consider the following processes you’d like to schedule:

Process Priority Arrival Time Burst Time
P1 2 0 4
P2 1 5 3
P3 1 7 2
P4 1 1 3
P5 2 3 1

You decide to use a round robin scheduler with a quantum length of 2 time units, and a priority queue. You
decide that a larger priority number means a process has a higher priority. You decide to schedule the
processes such that a higher priority process always runs ahead of a lower priority one. Processes that
have the same priority round robin normally.

(13 points) Fill in the boxes with the current running process for each time unit.

0 13

(3 points)What’s the average response time? (Your answer can be fractional.)

(4 points)What’s the average waiting time? (Your answer can be fractional.)

6



(10 points total) Page Tables.

Your system has 2 MiB (221) pages, a PTE size of 8 bytes, and uses 57 bit virtual addresses. You decide
to use multi-level page tables, and fit each smaller page table on a single page.

(2 points) How many PTEs can you fit into a single smaller page table? (Answer can be a power of 2.)

(4 points) How many levels do you need for your multi-level page table? Show your work.

Now that you have a multi-level page table with n levels (if you didn’t calculate n you can assume a value
greater than 1). You want to calculate the effective access time of this approach. On this system it takes
10 ns to search the TLB, each memory access takes 100 ns, and we have a hit rate of 50%. Recall that for
a single page table the equation for effective access time is:

EAT = α× TLBHitTime + (1− α)× TLBMissTime

where

TLBHitTime = TLBSearch + Mem

TLBMissTime = TLBSearch + 2× Mem

(4 points) Calculate the effective access time for this multi-level page table. Show your work.

7



8


