

Chem 30 A Winter 2008 Final (180 mins) Wednesday March 19, 2008

Н						
Be	В	С	N	0	F	Ne
1.5						
Mg	Al	Si	Р	S	C1	Ar
1.2	1.5	1.8	2.1	2.5	3.0	
Ca	Ga	Ge	As	Se	Br	Kr
1.0	1.6	1.8	2.0	2.4	2.8	14.1
Sr	In	Sn	Sb	Te	I	Xe
1.0	1.7	1.8	1.9	2.1	2.5	

Electronegativity values for some atoms (Pauling scale)

DO NOT OPEN THIS EXAM UNTIL INSTRUCTED TO DO SO

Bree-[Page	Point	Score		Page	Point	Score
	3	16			12	8	
Diec [4	10			13	9	
~	5	10			14	12	
1	6	14		Ērie	15	10	
Enc	7	12			16	10	
-	8	15			17	10	
L.	9	14			18	10	
Γ	10	18		Bree	19	8	
Bree -	11	8			20	6	
,	subtotal	117			Total	200	

1. Penicillin V is a broad-spectrum antibiotic isolated from penicillium mold. Answer the questions below. (16 points)

(a) $1 \cdot sp$ 2. sp^2 3. sp^3

1. sp^3 2. sp^3 3. sp^2

- (b) 1. sp^3 2. sp 3. sp
- (d) $1. \text{ sp}^2$ 2. sp 3. sp²

b. [2 points] How many chiral centers are present in Penicillin V?

Answer is: 3

3642

- c. [2 points] Identify the chirality centers by * on the above structure.
- 2 pts
- d. [2 points] How many lone pairs of electrons are present in Penicillin V?

2pts

Answer is: 14

e. [4 points] Name all the functional groups present in Penicillin V? (use primary / secondary where appropriate)

Answer: ether amide, sulfide, carboxylic acid

- f. [2 points] Identify the most acidic proton in Penicillin V (Circle the proton on the above structure)?
- g. [2 points] Indicate one transformation that you will make to synthesize a new analog of penicillin V that is more acidic than the present molecule? Explain in less than 15 words.

2. [2 points] Which structures belong to the ester class of molecules?

3. [6 points] What are the configurations for the stereocenters in the given molecules?

4. [2 points] Which are meso compounds?

9. [8 points] Stereoisomers of 2-amino-3-hydroxybutanoic acid (Threonine) are shown below:

- a) [2 points] What is the relationship between structure I and II: diasteremens
- b) [2 points] What is the relationship between structure II and III: Charles
- c) [4 points] Which structure represents the (2R,3R) isomer:

10. [6 points] Draw 3 isomeric compounds (I; II; III) which when treated with HCl give the product in the reaction shown below?

11. [3 points each] Give the major product of the following reactions. Show stereochemistry and all possible stereoisomers where appropriate. Write "No Reaction" where appropriate.

12. [8 points] What stereochemistry do you expect for the alkene obtained by E-2 elimination of (1S, 2S) -1,2-dibromo-1,2-diphenylethane.

Draw the sawhorse formula of (1S,2S) -1, 2-dibromo-1,2-diphenylethane (Box A) and the alkene product in Box B.

Show proper arrows to demonstrate the E-2 elimination.

13. [6 points] Designate the following alkenes as **E** or **Z**. (Place the letter in the box). CIRCLE the highest priority groups on each of the sp² carbons.

14. [18 points] Give the major product of the following reactions. Please indicate stereochemistry where ever possible.

15. [8 points] Provide <u>a reasonable mechanism</u> to account for the transformation (solvolysis) of **A** into B— show all steps including the properly drawn curved arrows and all intermediates. Make sure each individual step is mass- and charge-balanced.

16.(a) [4 points] Write the product of the reaction of tosylate A with sodium azide in DMSO. Provide stereochemistry if applicable.

16.(b) [4 points] Write the major product for the reaction of tosylate B with sodium methoxide in MeOH. Provide stereochemistry if applicable.

17. [3 + 2 points] Norepinephrine is a biologically important molecule. (-)-Norephinephrine is the (R) isomer and has the required physiological property as a hormone and a neurotransmitter. Draw the 3-D structure of (-)-Norepinephrine.

What can you say about the biological property of the S isomer? Explain in less than 15 words.

18. [4 points] Compound A is stable in ethanol (CH₃CH₂OH), B is rapidly converted to another compound. Explain (less than 25 words)

19. [4 + 3 points] A hydrocarbon of unknown structure has the formula C_8H_{10} . On catalytic hydrogenation over Lindlar catalyst, 1 equivalent of H_2 is absorbed. On hydrogenation over a Palladium catalyst, 3 equivalents of hydrogen are absorbed.

a) How many degrees of unsaturation are present in the unknown?					
Answer is:			יקו		
b) How many triple bonds are present?	Answer is:	Ì	_ lp		
c) How many double bonds are present?	Answer is:		ر م ا		

d) How many rings are present?

Answer is: _____

e) Draw one structure that fits the data?

20. [5 points] Give the absolute configuration of the stereocenters indicated by the arrow in the molecule called "Crixivan".

How many stereoisomers are possible for Crixivan?

21. [10 points]

(a) Propose a mechanism for the formation of Product A and Product B.

22. [10 points] Synthesize 3-bromohexane from acetylene (a two carbon alkyne) and appropriate alkyl halide (will require more than 1 step). Show stepwise synthesis and provide the reagents that you will use for the transformation.

23. [10 points] Predict the Ozonolysis products for the terpenes shown below.

How many chiral centers are present in γ-bisabolene?

How many Cis double bonds are present in γ-bisabolene?

The how many stereoisomers can γ-bisabolene have?

γ-bisabolene is made up of isoprene units.

Circle the isoprene units in the terpene

3 pt isoprene units in the terpene

24. [10 points] Synthesize 1-hexanol beginning from acetylene (two carbon alkyne; C₂H₂) and an appropriate alkyl halide.

H=H +
$$ABR$$
 NaNHz

H

H

H

H

H

H

H

H

Apto H

A

25. [8 points] Describe using Valence Bond Theory the orbitals used in bonding for Acetic acid [CH₃COOH]. Show ground state C and O, excited state electronic configuration state for C and hybridization of atomic orbitals for C and O and their overlap using proper orbital diagram. Using VSEPR predict the bond angles and geometry (shape) around the OCO bond.

26. [3 points] Draw two resonance contributors of the aldehyde shown below. Show curved arrows to indicate movement of electrons.

27. [3 points] Provide the correct order of the acidity of the following compounds in the box below:

och oh cooh oh oh 1 2 3 4

strongest
$$3 > 4 > 1 > 2$$
 weakest $3 > 4$