Chem 20AH

2nd MIDTERM, November 15, 2017

NAME_____

Problem	Points possible	Points scored
1(a)	10	
1(b)	10	
2 (a)	15	
2 (b)	15	
2 (c)	10	
3(a)	15	
3(b)	10	
3(c)	8	
3(d)	7	
	100	

BE SURE TO SHOW ALL YOUR WORK, I.E., MAKE CLEAR THE REASONING BEHIND YOUR SOLUTION TO EACH PROBLEM.

BE CAREFUL TO WRITE UNITS FOR EVERY QUANTITY WITH DIMENSIONS, WITHOUT EXCEPTION.

A PERIODIC TABLE, A LIST OF FUNDAMENTAL CONSTANTS, AND SOME POSSIBLY USEFUL EQUATIONS, ARE PROVIDED ON THE LAST PAGE OF THE EXAM.

1. (20 points) If all we know about a hydrogen atom is that its energy is
$$E = -(R)d_1$$
, we can conclude that
it is in the state $\psi_{E=E_1} = \psi_{1,1}$ where $\psi_{1,1}$ is the top function in Table 5.2 of the textbook (and in the table on
page 1 of Lecture 17/18, and on the back page of this exam), because this is the one and only solution to the
hydrogen-atom Schroedinger equation corresponding to this energy.
But suppose, instead, that all we know is that the energy of the atom is $E = -\frac{1}{4}(Ryd)$; in this case the
(normalized) wave function is $\psi_{E=E_1} = \sqrt{\frac{1}{4}}(\psi_{2,1} + \psi_{2,p_1} + \psi_{2,p_1} + \psi_{2,p_1})$, where $\psi_{2,1}, \psi_{2,p_1}, \psi_{2,p_1}$, and ψ_{2,p_2} are the
next four wavefunctions in the table.
(0 (a) (10 points) What is the value of $\psi_{E=E_1}(\vec{r})$ at the origin (nucleus)?
 cA origin, $\vec{r}^2 = (r=0)$ regard (less of angle.
 $\psi_{2} = \frac{1}{2\sqrt{2}} \left(\frac{1}{4\pi}\right)^{3/2} (2-\frac{r}{2\pi}) e^{-r/2a_0} \left(\frac{1}{4\pi}\right)^{3/2} e^{-r/2a_0} \left(\frac{1}{4\pi}\right)^{3/2} e^{-r/2a_0} \left(\frac{1}{4\pi}\right)^{3/2} e^{-r/2a_0} \left(\frac{1}{4\pi}\right)^{3/2} e^{-r/2a_0} \left(\frac{1}{4\pi}\right)^{3/2} e^{-r/2a_0} \left(\frac{1}{4\pi}\right)^{3/2} e^{-r/2a_0} e^{-r/2a_0} \left(\frac{1}{4\pi}\right)^{3/2} e^{-r/2$

(b) (10 points) What about its values at a point on the z-axis a distance $2a_o$ from the origin? And at a similar $\sqrt{2}$ point on the <u>y-axis</u>? And on the <u>x-axis</u>?

they're the same!

2. (40 points) Consider two particles, one with mass (m_1) and the other with mass (m_2) , in a onedimensional (1D) box of length L, centered at $x = \frac{L}{2}$ If the particles do not interact at all with one another, the Schroedinger equation for this system is

$$-\frac{h^2}{8\pi^2 m_1}\frac{d^2\psi}{dx_1^2}-\frac{h^2}{8\pi^2 m_2}\frac{d^2\psi}{dx_2^2}=E\psi.$$

 $\sqrt{2}$ (a) (15 points) Show that $\psi(x_1, x_2) = \frac{2}{L} \sin \frac{\pi x_1}{L} \sin \frac{2\pi x_2}{L}$ is a solution. What is the corresponding

=

$$\frac{d^{2}\psi}{dx_{1}} = \left(\frac{\pi}{L}\right)^{2} \cos\left(\frac{\pi x_{1}}{L}\right) \sin\left(\frac{2\pi x_{2}}{L}\right) \quad \frac{d^{2}\psi}{dx_{1}^{2}} = \left(\frac{\pi}{L}\right)^{2} \frac{2}{L} \sin\left(\frac{\pi x_{1}}{L}\right) \sin\left(\frac{2\pi x_{2}}{L}\right)$$
similarly
$$\frac{d^{2}\psi}{dx_{2}^{2}} = \left(\frac{2\pi}{L}\right)^{2}\psi$$

So plug them in:

Check boundary conditions:

 $\psi(0, L) = 0$ $\psi(L, 0) = 0$ $\psi(0, 0) = 0$ $\psi(L, L) = 0$

(b) (15 points) Derive the probability per unit length of finding particle 1 at x_1 , independent of where particle 2 is?

$$V^{2}(X_{1}, X_{2}) = \left(\frac{2}{L}\right)^{2} \sin^{2}\left(\frac{\pi X_{1}}{L}\right) \sin^{2}\left(\frac{2\pi X_{2}}{L}\right)$$

$$V^{2}(X_{1}, X_{2}) = \left(\frac{2}{L}\right)^{2} \sin^{2}\left(\frac{\pi X_{1}}{L}\right) \sin^{2}\left(\frac{2\pi X_{2}}{L}\right)$$

$$\int_{0}^{1} \sin^{2}\left(\frac{\pi X_{1}}{L}\right) \sin^{2}\left(\frac{\pi X_{1}}{L}\right) \sin^{2}\left(\frac{2\pi X_{2}}{L}\right)$$

$$\int_{0}^{1} \sin^{2}\left(\frac{\pi X_{1}}{L}\right) \sin^{2}\left(\frac{\pi X_{1}}{L}\right) \sin^{2}\left(\frac{2\pi X_{2}}{L}\right) \sin^{2}\left(\frac{\pi X_{1}}{L}\right)$$

$$\int_{0}^{1} \sin^{2}\left(\frac{\pi X_{1}}{L}\right) \sin^{2}\left(\frac{\pi X_{1}}{L}\right) \sin^{2}\left(\frac{\pi X_{1}}{L}\right) \sin^{2}\left(\frac{\pi X_{2}}{L}\right) dx_{2}$$

$$= \frac{1}{L^{2}} \sin^{2}\left(\frac{\pi X_{1}}{L}\right) \left(\frac{L}{2}\right)$$

$$\int_{0}^{1} \sin^{2}\left(\frac{\pi X_{1}}{L}\right) dx_{2}$$

$$= \left[\frac{2}{L} \sin^{2}\left(\frac{\pi X_{1}}{L}\right)\right]$$

$$\int_{0}^{1} \sin^{2}\left(\frac{\pi X_{1}}{L}\right) dx_{1} dx_{2}$$

$$= \left[\frac{2}{L} \sin^{2}\left(\frac{\pi X_{1}}{L}\right)\right]$$

$$\int_{0}^{1} \sin^{2}\left(\frac{\pi X_{1}}{L}\right) dx_{1} dx_{2}$$

$$= \left[\frac{2}{L} \sin^{2}\left(\frac{\pi X_{1}}{L}\right)\right]$$

$$\int_{0}^{1} \sin^{2}\left(\frac{\pi X_{1}}{L}\right) dx_{1} dx_{2}$$

$$= \left[\frac{2}{L} \sin^{2}\left(\frac{\pi X_{1}}{L}\right)\right]$$

$$\int_{0}^{1} \sin^{2}\left(\frac{\pi X_{1}}{L}\right) dx_{1} dx_{2}$$

$$= \left[\frac{2}{L} \sin^{2}\left(\frac{\pi X_{1}}{L}\right)\right]$$

$$\int_{0}^{1} \sin^{2}\left(\frac{\pi X_{1}}{L}\right) dx_{1} dx_{2}$$

$$= \left[\frac{2}{L} \sin^{2}\left(\frac{\pi X_{1}}{L}\right)\right]$$

$$\int_{0}^{1} \sin^{2}\left(\frac{\pi X_{1}}{L}\right) dx_{1} dx_{2}$$

$$= \left[\frac{2}{L} \sin^{2}\left(\frac{\pi X_{1}}{L}\right)\right]$$

$$\int_{0}^{1} \sin^{2}\left(\frac{\pi X_{1}}{L}\right) dx_{1} dx_{2}$$

$$\int_{0}^{1} \sin^{2}\left(\frac{\pi X_{1}}{L}\right) dx_{1} dx_{2}$$

$$\int_{0}^{1} \sin^{2}\left(\frac{\pi X_{1}}{L}\right) dx_{1} dx_{1} dx_{2}$$

$$\int_{0}^{1} \sin^{2}\left(\frac{\pi X_{1}}{L}\right) dx_{1} dx_{1} dx_{2} dx_{1} dx_{2} dx_{2} dx_{1} dx_{2} dx_{1} dx_{1$$

4

3. (40 points)

(a) (15 points) Derive the radial probability density for the <u>1s orbital</u> of an atom with atomic number Z, i.e., the probability per unit length of finding an electron at distance r when it is in the 1s state. Be careful to include correctly all of the "normalization" constants.

HINT: Use for the 1s wavefunction the 1s orbital of a hydroden-like atom with $Z = Z_{eff}$ where Z_{eff} is the effective charge on the nucleus seen by the 1s electrons, as determined by the Hartree self-consistent-field approximation.

$$\begin{aligned} \forall |_{S} &= 2 \left(\frac{1}{4\pi} \right)^{V_{2}} \left(\frac{2}{e^{ff}} \right)^{3/2} - 2e_{ff} r/a_{o} \\ radial probability density $P_{S}(r) = \int_{\theta=0}^{\pi} \int_{\phi=0}^{2\pi} \psi^{2} dV \left(\frac{1}{dr} \right) \\ &= \int_{\theta=0}^{\pi} \int_{\phi=0}^{2\pi} 4 \left(\frac{1}{4\pi} \right) \left(\frac{2e_{ff}}{a_{o}} \right)^{3} - 22e_{ff} r/a_{o} r^{2} dr \sin\theta d\theta d\phi \left(\frac{1}{dr} \right) \\ &= \frac{1}{\pi} \left(\frac{2}{e_{ff}} \right)^{3} - 22e_{ff} r/a_{o} r^{2} \int_{0}^{\pi} \sin\theta d\theta \int_{0}^{2\pi} d\phi \\ &= \left(-\cos \theta \right)^{\pi}_{0} = -(-1) - -(1) \\ &= \left(4 \left(\frac{2e_{ff}}{a_{o}} \right)^{3} \left(e^{-22e_{ff} r/a_{o}} \right) r^{2} \right) \\ F_{0} = \frac{1}{\pi} \left(\frac{2}{e_{ff}} \right)^{3} \left(e^{-22e_{ff} r/a_{o}} \right) r^{2} \\ &= \left(\frac{1}{\pi} \left(\frac{2}{e_{ff}} \right)^{3} \left(e^{-22e_{ff} r/a_{o}} \right) r^{2} \right) \\ &= \left(\frac{1}{\pi} \left(\frac{2}{e_{ff}} \right)^{3} \left(e^{-22e_{ff} r/a_{o}} \right) r^{2} \right) \\ F_{0} = \frac{1}{\pi} \left(\frac{2}{e_{ff}} \right)^{3} \left(e^{-22e_{ff} r/a_{o}} \right) r^{2} \\ &= \left(\frac{1}{\pi} \left(\frac{2}{e_{ff}} \right)^{3} \left(e^{-22e_{ff} r/a_{o}} \right) r^{2} \right) \\ &= \left(\frac{1}{\pi} \left(\frac{2}{e_{ff}} \right)^{3} \left(e^{-22e_{ff} r/a_{o}} \right) r^{2} \right) \\ F_{0} = \frac{1}{\pi} \left(\frac{1}{2} r \right) r^{2} \\ &= \frac{1}{\pi} \left(\frac{1}{2} r \right)^{2} \left(\frac{1}{2} r \right) r^{2} \\ &= \frac{1}{\pi} \left(\frac{1}{2} r \right) r^{2} \\ &= \frac{1}{\pi} \left(\frac{1}{2} r \right) r^{2} \left(\frac{1}{2} r \right) r^{2} \\ &= \frac{1}{\pi} \left(\frac{1}{2} r \right) r^{2} \left(\frac{1}{2} r \right) r^{2} \\ &= \frac{1}{\pi} \left(\frac{1}{2} r \right) r^{2} \left(\frac{1}{2} r \right) r^{2} \\ &= \frac{1}{\pi} \left(\frac{1}{2} r \right) r^{2} \left(\frac{1}{2} r \right) r^{2} \\ &= \frac{1}{\pi} \left(\frac{1}{2} r \right) r^{2} r^{2$$$

(b) (10 points) In part (a) you should have obtained a result for $P_{ls}^{Z}(r)$ that is proportional to $r^{2}e^{-2Z_{eff}r/a_{n}}$, where $Z_{eff} = Z_{eff}(Z; ls)$ is the self-consistent-field value for the effective charge on the nucleus seen by a 1s electron in an atom with Z protons and electrons. Derive an expression for the most probable value of the distance r for a selectron in an atom with atomic number Z, with the electronic structure of the atom treated by the self-consistent-field approximation.

For unot n is P (1) maximized?

$$\frac{d}{dr}P_{1s}(r) = 8\left(\frac{2eff}{a_{o}}\right)^{3}\left(e^{-22eff}r/a_{o}\right)r + 4\left(\frac{2eff}{a_{o}}\right)^{3}\left(-\frac{22eff}{a_{o}}\right)\left(e^{-22eff}r/a_{o}\right)r^{2}$$

$$= 8\left(\frac{2eff}{a_{o}}\right)^{3}\left(e^{-22eff}r/a_{o}\right)r - 8\left(\frac{2eff}{a_{o}}\right)^{4}\left(e^{-22eff}r/a_{o}\right)r^{2}$$

$$= 8\left(\frac{2eff}{a_{o}}\right)^{3}\left(e^{-22eff}r/a_{o}\right)r \left(1 - \left(\frac{2eff}{a_{o}}\right)r\right)$$
This is 0 when r=0 and $r = \frac{a_{o}}{2eff}$. P(o)=0 so \vec{O} is a maximum.

(c) (8 points) For this same 1s electron, how much more likely is it to be found at a distance of

$$\frac{\sqrt[3]{2}}{\sqrt[3]{2}} \text{ than at } \frac{a}{2}, \frac{a}{\sqrt{2}} \text{ than at } \frac{a}{\sqrt{2}}, \frac{a}{\sqrt{2}}$$

6