304441183 Student ID #

Name Changes S

March 4th, 2016 (11:00 - 11:50 a.m.)

Chem 20A, Winter 2016

This exam is closed book but you are allowed one 8.5" x 11" sheet of notes. Non-programmable calculators are allowed. Please read the questions carefully and make sure you answer all (and only!) the questions that are asked and be sure that your answers in the appropriate units with a reasonable number of significant figures. Be sure to show all your work as explicitly as possible if you want to receive partial credit, and circle or box your final answer(s); significant figures an units are an important part of each answer. Remember, a correct sentence or two explaining your reasoning and choice of equations will earn most of the points for a problem even if there is a numerical error. (Conversely, incorrect reasoning with a correct answer will result in points being deducted.) If you need additional space, use the back of the page and indicate on the front of the page that your work is continued on the back.

CONSTANTS:

	The state of the s
$N_{Av} = 6.0223 \times 10^{23} \text{ atoms/mole}$	$c = 2.9979 \times 10^8 \text{m/s}$
$e = 1.6022 \times 10^{-19} \text{ C}$	$m_e = 9.1094 \times 10^{-31} \text{ kg}$
$\varepsilon_0 = 8.8542 \times 10^{-12} \mathrm{C}^2/(\mathrm{J m})$	$m_n = 1.6726 \times 10^{-27} \text{kg}$
$h = 6.6261 \times 10^{-34} \text{ J s}$	$g = 9.8067 \mathrm{m/s^2}$
$\pi = 3.14159$	$1/(4\pi\epsilon_0) = 8.9875 \times 10^9 (\text{J m})/\text{C}^2$
O	

C atom:	Z=6;	atomic weight	= 12.011 g/mole	; [He](2s)*(2p)*
N atom:	Z = 7;	atomic weight	= 14.0067 g/mo	le; $[He](2s)^2(2p)$
O atom:	Z = 8;	atomic weight	= 15.9994 g/mo	le; [He](2s)2(2p)
S atom:	Z = 16	; atomic weigh	t = 32.06 g/mole	$[Ne](3s)^2(3p)^4$
Ba atom	1: Z = 5	6; atomic weig	ht = 137.327 g/n	nole; [Kr](2s)2

#1	12
#2	30
#3	50
Total	92

CONVERSION FACTORS:

1 atomic mass unit = $1.6605 \times 10^{-27} \text{ kg}$; $1 \text{ Å} = 1 \times 10^{-10} \text{ m} = 0.1 \text{ nm}$; $1 \text{ nm} = 1 \times 10^{-10} \text{ m}$ 1 eV = $1.6022 \times 10^{-19} \text{ J} = 96.485 \text{ kJ/mole}$ "=" 8065.5 cm^{-1} ; 1 kJ = 1000 J

FORMULAS:

K.E. =
$$1/2 m v^2$$
; $F = -\Delta U/\Delta x$

 $E_{\rm ph} = h\nu = hc/\lambda$; deBroglie Wavelength: $\lambda = h/p$; $h = h/2\pi$

Coulomb Potential: $U(r) = q_1 q_2/(4 \pi \epsilon_0 r)$; Coulomb Force: $F_C = q_1 q_2/(4 \pi \epsilon_0 r^2)$

Moment of Inertia for a Diatomic Molecule: $I = \frac{m_1 m_2}{m_1 + m_2} R^2$ Reduced mass for a Diatomic Molecule: $\mu_{red} = m_1 m_2/(m_1 + m_2)$

Frequency for a vibrating diatomic molecule: $\omega_{osc} = \frac{1}{2\pi} \sqrt{\frac{k}{W_{red}}}$

Bragg Formula for maxima: $n\lambda = d \sin \theta$; n = 1, 2, 3, ...

 $E = -\frac{m(2\pi)^2 e^4}{2h^2(4\pi\epsilon_0)^2} \frac{Z^2}{n^2} = -\frac{Z^2}{n^2} E_0; \quad n = 1, 2, 3, \dots$ One-e- Atom Electronic Energy Levels:

 $E = \frac{\hbar^2}{2J}J(J+1)$; J = 0, 1, 2, 3, ...Energy Levels for a Rotating Diatomic:

Energy Levels for a Vibrating Diatomic: $E = h\omega_{osc}(v + 1/2)$; v = 0, 1, 2, 3, ...

Dipole Moment (for μ in Debye; R in Å; δ in e^- units): $\mu = R\delta/0.2082$

80

Midterm (Continued)

Chem 20A, Winter 2016

 (20 pts total) The Lewis structure (but not necessarily the chemical structure!) for the hydrocarbon molecule propene (C₃H₆) is shown at right. Keep in mind that although the structure is drawn co-planar with bonds at right angles, the actual chemical structure and bond angles are likely to be different. Note: No MO diagram is needed for this problem!

 $\begin{array}{ccccc}
H & H \\
C = C - C - H \\
H & H & H
\end{array}$

(a) (16 points) Use the ideas of the VSEPR theory to estimate the four bond angles (a, b, c and d) shown in the picture. For each of the 4 bond angles, do you expect the actual bond angle to be slightly larger, slightly smaller, or equal to your estimate? <u>Briefly</u> explain why for each angle.

1 Sweller

why for each angle.

a - ~ = 120 - clear on christe site of large charge density (dauble hand).

b - ~ > 120 - adjacent to a dauble hand, when charge density will be higher.

c - ~ < 120? - an approach and a longe charge density (dark hand).

d - enactly 109.50 - no lare pain/dark hands/0

(b) (4 points) List the hybridization of each of the three C atoms (left, center, and right) in the molecule; no justification is needed.

St2, 5 92, 92, 93

Manage			
Name			

Midterm (Continued)

Chem 20A, Winter 2016

(30 points total) The cyanogen molecule (CN) is known to be a stable although highly reactive diatomic, and its structure has been deduced in various spectroscopy experiments.

(a) (20 points) Write down a molecular orbital energy (correlation) diagram for the CN molecule; you do not need to include the filled MO's formed by LCAOs of the 1s or 2s orbitals, only those formed from the LCAO's of the 2p valence electrons. Be sure to fill the molecular energy levels with the appropriate number of electrons for CN. Label each of the AO's and MO's in your diagram, and be sure to briefly justify how you picked the ordering of the MO energy levels.

ally B, G N present, so I enough level is higher than TI Bo enough level.

Midterm (Continued)

Chem 20A, Winter 2016

2. (Continued)

(b) (10 points) Write down a Lewis structure for CN, and make sure to indicate formal charges on each atom. Based on your MO diagram in part (a), what is the bond order of CN? Does this agree with the Lewis structure (yes or no)? Would you expect CN to be paramagnetic or diamagnetic?

C: 4 valence e's

N: 5 valence e's

4+5 = 9

Since N is more electron garing

a ssum N has the ser lare par

C has single e:

C famal charge: 5-(2, +36)=0

No. 15 shaws BO of 3; C. they disagree.

No. 15 shaws BO of 3; C. they disagree.

paramagnatic. 2

(0

		Name	
la la vater	Midterm (Continued) 3. (50 points) A microwave spectroscopy exper of evenly spaced absorption lines, with the 16.0 mm (= 0.016 m). An infrared absorption single line at 127 cm ⁻¹ . The bond dissociation moment of BaO is 7.05 D units. Calculate the separation) of the Ba-O bond. MB MO	lowest frequency line having a w on experiment on this same mole on energy of BaO is 561 kJ/mole the fraction ionicity (that is, the deg	hows a series vavelength of cule shows a . The dipole ree of charge
Petake	$ \frac{m_{R,+}}{f} = \frac{n^2}{8\pi^2 (nR^2)} J(J+1) \Rightarrow (J+1) $	(C) (4) · (24-80) · (24-80) · (24-80)	7)===
h	M = R S/20 7.05 - RS/2082	82	+C85
	S=.7564	et. +50 charge segantion:	S (?)
		1.94 × 10-10 m	-