Chemistry 20-A Dr. E.R. Scerri Mid Term Exam November, 2014

50 minutes

PROBLEM	SCORE	Max Score
1	14	14
2		12
3		16
4	9	12
total	45	54

(Last name first) Mortel Doulvic

Signature Math

D# 904 227 174

Name _____

<u>Instructions</u>: This exam has 4 questions plus a periodic table at end of exam. Verify you have the right number of pages before you begin. Different questions carry different numbers of points. Write your name on each page. Raise your hand if you don't understand a question. <u>SHOW YOUR WORK!</u> No credit will be given for an unsubstantiated or illegible answer. Write legibly, use proper <u>units</u> throughout and use <u>significant figures</u> in all answers. Good luck!

Possibly useful information:

12 inches = 1 foot,

2.54 cm = 1 inch.

 $h = 6.63 \times 10^{-34} \text{ J sec}$

 $N_0 = 6.02 \times 10^{23} \text{ mol}^{-1}$

 $c = 3.00 \times 10^8 \text{ m sec}^{-1}$

 $m_e = 9.11 \times 10^{-31} \text{ kg}$

 $1 \text{ a.m.u.} = 1.66 \times 10^{-27} \text{ kg}$

 $1 \text{ Å} = 10^{-10} \text{ m}$

g = 9.81 m/s

 $1 \text{ eV} = 1.602 \times 10^{-19} \text{ J}$

 $V_{electrostatic}(r) \propto Q_1Q_2/r;$

K.E. =1/2mv² = $p^2/2$ m

 $F = -\Delta V/\Delta r$ $\lambda v = c$

 $\Delta E = E_f - E_i = \epsilon_{photon} = hv$

 $hv = hv_0 + K$. E.(electron)

 $\lambda_{\text{mass}} = \frac{h}{\text{mv}} = \frac{h}{p}$

 $\Delta p \Delta x \geq \frac{h}{4\pi}$

Probability density = $|\Psi_n(r)|^2$

 $E_n = -(2.18 \times 10^{-18} \text{ J}) Z^2/n^2$

 $r_n = (0.529 \text{ Å})n^2/Z_{eff}$

n - ℓ - 1 spherical (radial) nodes; ℓ angular nodes; n - 1 total nodes

Bond order = (# bonding e- - # antibonding e-)/2

Spectrochemical series (abbreviated) Cl > F > H₂O > NH₃ > en > CN-

Name	
	A Company of the Comp

1. Consider the following unbalanced equation

Assume that $40.0 \text{ g of } (NH_4)_3 PO_4$ are reacted with $25.0 \text{ g of Pb} (NO_3)_4$.

How many grams of NH_4NO_3 will be produced assuming that the yield for the reaction is 68%? Assume the following approximate molecular masses for the four substances in the above reaction, from left to right, 149, 455, 991 and 80 amu. (10 points)

= 12.09 NH4 NO3

1(b) Sketch a left-step periodic table and mention it's possible advantages and disadvantages (4)

Name	

In quantum mechanics the operator for linear momentum in the x direction is given by 2(a).

$$p_x = -i \hbar (\partial / \partial x)$$

Use this formula to write an expression for the part of the Hamiltonian that corresponds to the kinetic energy of a particle moving in the x direction. Show each step you take. (As you may recall, the Hamiltonian is the operator H which acts on the wavefunction to give the total energy times the wavefunction or; $H\psi = E\psi$).

Explain and show mathematically why the following expression, 2(b).

$$\psi(x) = A \sin kx$$

is a possible solution to the Schrödinger equation for a particle moving in a 1-D box. The Schrödinger equation for this system is,

If the kinetic energy of an electron is known to lie between 1.59 x 10^{-19} J and 1.61 X 10^{-19} J 2(c). what is the smallest distance within which it can be known to lie

2(c). If the kinetic energy of an electron is known to lie between 1.59 x 10-19) and 1.61 x 10-19) what is the smallest distance within which it can be known to lie

$$\lambda = \frac{L}{MV} \quad KE = \frac{1}{2} \frac{MV^2}{V_1} \quad \frac{2 KE}{V_2} = \frac{1.23 \text{ nm}}{MS}$$

$$\lambda_2 = \frac{L}{MV_2} = 1.22 \text{ nm}$$

$$\lambda_3 = \frac{L}{MV_2} = 1.22 \text{ nm}$$

$$\lambda_4 = \frac{L}{MV_2} = 1.22 \text{ nm}$$

$$\lambda_5 = \frac{L}{MV_2} = 1.22 \text{ nm}$$

$$\lambda_5 = \frac{L}{MV_2} = 1.22 \text{ nm}$$

$$\lambda_5 = \frac{L}{MV_2} = 1.22 \text{ nm}$$

	Name
3(a).	How many planar nodes and radial nodes are present in any 6d orbitals? Planar Radial Radia Radial Radial R
	Draw all the nodes and indicate phases on your diagram. (3)
	reading the planar of
3(b).	Draw a graph to show the radial distribution function, meaning $4\pi r^2 \psi^2$ versus r, for a 5s orbital. (3)
	4 m r 2 4 3
3(c).	What is the wavelength of a spectral line due to a transition between the n = 3 and = 7 levels of an ion of 0^{+7} ? (4) $E = -R_{\infty}(\vartheta^2) \left(\frac{1}{9} - \frac{1}{49}\right) = \frac{hC}{2} = 1.26 \times 10^{-17}$
	- Mary 15. TAM
3(d)	Explain why ionization energy shows a decrease between the following elements, (4)
U(w)	
	(i) arsenic & selenium
	Arsenz has a purbital with 3 electrons one in
	two e into one subtenel increasing e e repulsion, decreasing energy
	(ii) magnesium to aluminum one e work than magnesium will create a new p
	thell and so clements in He some group as Al only here
	one in only shell which has lone ionication energy compared
	to the full 5 shell of May

	Name
ł(a).	Each part is worth 2 points. Why is it strictly incorrect to write the configuration of manganese as [Ar] $4s^2\ 3d^5\ ?$
+	For manyonese, He 30 orbital is lover energy than 45.
ł(b).	What is the configuration of the Cu ⁺ ion ?
+ (1/5 ² 25 ² 2p ⁶ 35 ² 5p63010 (loses 45)
ł(c).	What connection, if any, is there between the answer to 4b and part 4a?
	For Cut, it lost the 4s electron because it was higher energy. Then 3d, when you idnize you take away the outer most e- which is why Ma shows be CAr J 315 45° to show it loses 45 e's first Why is the configuration of potassium [Ar] 4s1 rather than [Ar] 3d1?
12	For potassium, the 4s orbital is lover energy. Hen the 3d urbital sa following Aufhan it goes into 4s first
4(f).	What is unique about the configuration of the palladium atom (Pd)?
-	IVSKIPS) the SS orbit- l completely. IDK!!
4(g).	Explain why the atom of yttrium (Y) can show greater stability by adopting a configuration of [Kr] 4d ¹ 5s ² rather than [Kr] 4d ³ ?
- C	The full 5s shell is less unstable compared to having 3 out of 10 in the 2 shell