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1. (23 points) Let’s consider a two-dimensional surface comprised of 1 mole of water. Note
that the surface is comprised of only one component (i.e., water). For such a two-
dimensional system, the surface tension (y) multiplied by the differential area stretched
(da) replaces the conventional PV work. The Fundamental Equation (i.e., Combined 1*
and 2" Laws) for this two-dimensional system comprised of 1 mole can therefore be
written as:

dU=56Q+ W =TdS +yda

when considering a closed system. Unlike PV work, yda is positive in the Fundamental
Equation because performing work on the system (i.e., increasing the energy of the
system) corresponds to stretching the surface. Here are the analogous equations in two-
dimensions for the molar enthalpy, the molar Helmholtz free energy, and the molar Gibbs
free energy:

H=U-vya
A=U-TS
G=H-TS

The molar heat capacity at constant area, Ca, for the surface has been measured, and it is

defined as:
c.<(%2)
aT ),

This heat capacity can be treated as a known constant in this problem. The same is true
for the molar heat capacity at constant surface tension, C,, and it is defined as:

()
oT .



The following model represents an equation of state for the surface:

€Tn
a
where C is a known constant, n is the number of moles, a is the total area, and T is the
absolute temperature.

The surface undergoes a reversible, nonisothermal expansion from (T1,a1) to (T2,a2).
The surface tension of the 1 mole of water during this process was experimentally found
to vary according to the following equation:

Y =Yot+ Ba

where yo and [ are constants, while y and a are the surface tension and molar area,
respectively. Using two distinct overall approaches, derive an expression for the heat
transferred to the surface in terms of the variables given as known in the problem
statement.









2. (37 points) Consider two separate experiments. In one experiment, an aqueous mixture
containing n* moles of Macromolecule A is put in contact with a negatively charged
polymeric scaffold. This scaffold has pores, and water fills the pores. Macromolecule A
partitions, or distributes, between the external aqueous solution and the aqueous solution
inside the polymeric scaffold. In this experiment, the polymeric scaffold is sitting in a
total aqueous solution of Vit liters, and Vex: liters of the Vot liters correspond to the
volume of the aqueous solution external to the scaffold and not filling the pores of the
hydrogel. Macromolecule A is allowed to diffuse between the aqueous solution filling
the pores of the polymeric scaffold and the aqueous solution external to the polymeric
scaffold at constant temperature and pressure. The temperature and pressure of the
aqueous solution inside the polymeric scaffold can be assumed to be equal to the
temperature and pressure of the aqueous solution external to the polymeric scaffold at T*
Kelvins and P* atm.

The activity coefficient of Macromolecule A in the aqueous solution external to the
polymeric scaffold is given by the following expression:

Ya=¢€
where ¢ is a parameter that is a known constant at T* Kelvins and P* atm.

The excess Gibbs free energy of the aqueous solution inside the polymeric scaffold is
given by:

G = nyRTIn(B) + n,RTIn(w)

where na and nw are the moles of Macromolecule A and water, respectively, R is the
ideal gas constant, and 3 and o are parameters. At T* Kelvins and P* atm, § and o are
known constants.

In another experiment, an aqueous mixture containing n* moles of Macromolecule B is
put in contact with a negatively charged polymeric scaffold. This scaffold has pores, and
water fills the pores. Macromolecule B partitions, or distributes, between the external
aqueous solution and the aqueous solution inside the polymeric scaffold. In this
experiment, the polymeric scaffold is sitting in a total aqueous solution of Vit liters, and
Vext liters of the Viot liters correspond to the volume of the aqueous solution external to
the scaffold and not filling the pores of the hydrogel. Note that n*, Viot, and Vext are the
same values between the two experiments. Macromolecule B is allowed to diffuse
between the aqueous solution filling the pores of the polymeric scaffold and the aqueous
solution external to the polymeric scaffold at constant temperature and pressure. The
temperature and pressure of the aqueous solution inside the polymeric scaffold can be
assumed to be equal to the temperature and pressure of the aqueous solution external to
the polymeric scaffold at T* Kelvins and P* atm.

The activity coefficient of Macromolecule B in the aqueous solution external to the
polymeric scaffold is given by the following expression:



Y =&

where ¢ is a parameter that is a known constant at T* Kelvins and P* atm, and it’s exactly
the same as that for Macromolecule A.

The activity coefficient of Macromolecule B in the aqueous solution inside the polymeric
scaffold is given by:

Y=t
where 71 is a parameter, and at T* Kelvins and P* atm, 1 is a known constant.

Both experiments take place at a pH of n, which is close to 7. Macromolecule A and
Macromolecule B are the exact same size. However, Macromolecule A has 0 carboxylic
acid groups (each with a naive pKa of 4), and Macromolecule B has y amines (each with
a naive pKa of 9). Derive expressions for the net charge of each macromolecule. If you
could measure the net charge of Macromolecule B, would you expect the net charge to be
equal, more negative, less negative, more positive, or less positive than the predicted
expression for Macromolecule B? Please explain.

Can you qualitatively predict if zor gis larger? Why or why not? Use equations and
words in giving your rationale.

In both experiments, you wait for equilibrium to be achieved at T* Kelvins and P* atm.
Derive an expression for the moles of Macromolecule A encapsulated in the polymeric
scaffold at equilibrium. Also derive an expression for the moles of Macromolecule B
encapsulated in the polymeric scaffold at equilibrium. Which do you expect to be larger?
Please explain qualitatively. Please also explain using the expressions derived for moles
encapsulated.















3. (23 points) You perform an experiment where no moles of a dye are dissolved in Vw0
liters of water. This solution is then mixed with Voiia liters of type A oil, where the
molecular weight of the type A oil is Ma g/mol and its density is pa g/mL. There is no
dye originally in the type A oil, but after mixing, the dye distributes between the water
phase and the type A oil phase. The concentration of the dye in the type A oil phase after
achieving equilibrium at T* Kelvins and P* atm is C1 mol/L. The Vw, liters of water are
then removed and put in contact with Vil liters of type B oil, where the molecular
weight of the type B oil is M g/mol and its density is ps g/mL. There is also no dye
originally in the type B oil, but after mixing, the dye distributes between the water phase
and the type B oil phase. The concentration of dye in the aqueous phase after achieving
equilibrium at T* Kelvins and P* atm is C2 mol/L. You know the 1 M standard state of
the dye in water at T* Kelvins and P* atm is y Joules/mol. Also, the concentration of
dye in every phase throughout the experiment is very low. Derive expressions for the 1
M standard state of the dye in the type A oil at T* Kelvins and P* atm and the 1 M
standard state of the dye in the type B oil at T* Kelvins and P* atm. Please also derive
the infinite-dilution standard state of the dye in the type A oil at T* Kelvins and P* atm
and the infinite-dilution standard state of the dye in the type B oil at T* Kelvins and P*
atm. Make sure you show your work when connecting the different standard states.









4. Short answers Part 1

a.

(4 points) A noncharged polymer is added to the left-hand side compartment of a
diffusion cell that is filled with permeable water. The molecular weight of the
polymer is Mw,i. Although water can diffuse across the membrane into the right-
hand side compartment, the polymer molecules cannot diffuse across the
membrane. Assuming that the virial expansion for osmotic pressure applies to
this situation and that you only need to consider the expansion to second order
(i.e., only consider up to the second virial coefficient, B), make a plot of n/(RTpi)
vs. pi, where 7t is the osmotic pressure, R is the ideal gas constant, T is the
absolute temperature and pi is the mass of polymer i per volume. Note that these
polymer i molecules interact with each other via van der Waals interactions. On
the same plot, make a plot for a polymer that has a molecular weight of Mw,a,
where Mw.a is greater than Mw,i. Note that these polymer A molecules interact
with each via excluded-volume interactions.

(5 points) Consider a mixture containing three types of molecules (types 1, 2, and
3) at temperature To Kelvins and pressure Po atm. The mole fraction of the type 1
molecule is X* and that of the type 2 molecule is Xo. If you add 1 mole of the
type 1 molecule to this mixture, the entropy of the solution decreases by a
Joules/Kelvin. The chemical potential of molecule 1 at this composition is known
as 3 Joules/mol. Note that a and 3 are positive constants. What is the partial
molar enthalpy of component 1 at To, Po, and Xi=X*, X2=Xo.



5. Short answers Part 2

a. (3 points) State the number of independent intensive variables (i.e., the degrees of
freedom) for the following scenario. 3 compartments. Compartment 1 (left) has
components A, B, C, and D. Compartment 2 (middle) has components A, E, F,
and G. Compartment 3 (right) has components E, G, H, and I. As indicated in the
picture below, a membrane divides compartments 1 and 2 and only allows
component A to diffuse between the two compartments. Also, as indicated in the
picture below, a membrane divides compartments 2 and 3 and only allows
components E and G to diffuse between the two compartments.

A,B,C,D | AEFG E,G,H,I

b. (2 points) What does “CMC” stand for? Please also explain what it represents.



c. (1 point) Consider a two components system comprised of molecules of type 1
and 2. Please write the condition to determine if a homogeneous solution will
phase separate.

d. (2 points) Is the following function a state function:

where o and [ are positive constants.
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