CS M51A, Fall 2022, Midterm (Total Mark: 15 points)

Student Name:

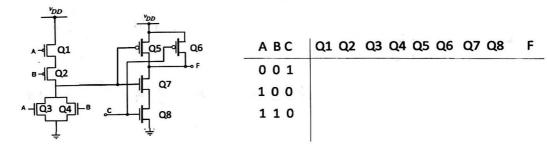
Student ID:

1. (2 Points) Using boolean algebra, Simplify the following expression as much as possible.

(a)
$$F = (B.C) + (B.1) + (C.0) + (B.B.C)'$$

(b)
$$F = (C + A).(B + 1).(A + C)'.(B + C)$$

- 2. (2 Points) Present the following numbers in decimal.
 - (a) 1101 is an unsigned number
 - (b) 1101 is a two's complement
- 3. (3 Points) Present the Sum of MINTEMRS and Product of MAXTEMRS for the following system, where A, B and C are inputs and F is the output. (Hint: you may first draw a truth table and then write the expressions)


$$F = (A.B) + C$$

4. (3 Points) Implement F = A XNOR B using transmission gates. You are allowed to use 1, 0, A, A', B, and B' as your signals.

5. (2 Points) Using the following K-Map, write the simplified sum of product (SoP) and product of sum (PoS) terms. (For your convenience, two same K-maps are provided. Use one for SoP and the other for PoS)

9		x	0		
	1	0	0	1	
	0	1	0	0	
	1	1	1	1	x2
<i>x</i> ₃	1	0	0	1	ľ
•	x,				
		x	0		
	1	0	0	1	
	0	1	0	0	
	1	1	1	1	x2
<i>x</i> ₃	1	0	0	1	ľ
•			ς.	٠,	•

6. (3 Points) Given the circuit below, complete the table below, determining the resistances for Q_1 to Q_6 and the final output F. The transistors Q_1 to Q_8 should be High or Low (show by 'H' or 'L') resistance. The output F may be 0, 1, float (show by -) or short (show by *). Remember short means the output is connected to both VDD and ground at the same time.

