UCLA Computer Science 35L Final Exam - Winter 2022
Open book, open notes, closed computer.

180 points total, 180 minutes total

Write answers on the exam in spaces provided.

Name:
Student ID:

1 (8 minutes). Briefly explain why GDB watchpoints can greatly slow
down debugging compared to GDB breakpoints, and why there are
important special cases on the SEASnet GNU/Linux hosts where GDB
watchpoints can be implemented efficiently anyway.

2 (12 minutes). Explain why Git and zTib Huffman-encode the result of
dictionary compression, rather than the reverse (1.8,
dictionary-encode the result of Huffman compression) .

[page 2]

3 (16 minutes). The ‘cp’ command lets you copy many files to the same
directory. For example, if G/H is a directory, the command:

cp A B/C D/E/F G/H

copies A to G/H/A, B/C to G/H/C, and D/E/F to G/H/F. Suppose you want
to do the reverse, i.e., to copy many files *from* the same

directory. Write a shell script fromcp to do that. For example, if

G/H is a directory, the command:

fromcp G/H A B/C D/E/F

should copy G/H/A to A, G/H/C to B/C, and G/H/F to D/E/F. If any of
the individual copying actions fail, fromcp should continue to attempt
the rest of the actions, but it should exit successfully only if all
the copying actions succeed.

[page 3]

4 (12 minutes). Suppose we have a toy C program implemented as
follows. The file prog.in.h is empty, the file prog.c contains just
the single line ‘int main (void) { return 0; }’, and we have the
following Makefile:

prog: prog.o prog.h
$(CC) $@.0 -0 %@

prog.o: prog.c prog.h
$(CC) -c prog.c

prog.h: prog.in.h prog
./prog <prog.in.h >$@

We run the shell command ‘make’ and see the following output:

make: Circular prog.h <- prog dependency dropped.
./prog <prog.in.h >prog.h

/bin/sh: line 1: ./prog: No such file or directory
make: *** [Makefile:5: prog.h] Error 127

We think, “What in the world happened? I'm not sure, let’s try it again.”
So we run the shell command ‘make’ again and see the following:

make: Circular prog.h <- prog dependency dropped.
CC -C prog.c
CC prog.o -o prog

and we then think “Oh, it’'s just some sort of ‘make’ bug that
generates a false alarm, and it’s not a real problem because ‘prog’
got built so I'll just move ahead to my next problem.”

Explain why the first ‘make’ failed but the second ‘make’ succeeded,
and why our problem diagnosis is incorrect.

[page 4]

5a (4 minutes). Briefly explain how the annualized failure rate (AFR)
should affect your backup policy.

5b (4 minutes). If you use GitHub to store your class project source
code, what is your failure model for backups, and what are the most

important failures to worry about?

5¢c (4 minutes). What backup strategy should work well for these
failures? Briefly explain. ’

[page 5]

6 (10 minutes). The command ‘git merge-base’, which was not discussed
in class, is documented as follows:

git merge-base finds best common ancestor(s) between two
commits to use in a three-way merge. One common ancestor is
better than another common ancestor if the latter is an
ancestor of the former. A common ancestor that does not have
any better common ancestor is a best common ancestor, i.e. a
merge base. Note that there can be more than one merge base for
a pair of commits.

Diagram an example repository where there is more than one merge base
for a pair of commits, and specify the ‘git merge-base’ command that
might output one merge base and might output another.

[page 6]

7a (5 minutes). The command ‘git diff’ exits with status 0 if there are
no differences, 1 if there are differences, and some other status if
there is trouble (e.g., a bad option or file name). Suppose you have

a freshly cloned repository and working tree, containing a source file
named ‘f’. Give shell commands that will modify your repository

and/or working tree so that the following shell command will succeed:

git diff & ! git diff HEAD

7b (5 minutes). Similarly, if you start again from a freshly cloned
repository, give shell commands that will cause the following shell
command to succeed:

git diff HEAD && ! git diff

[page 7]

8. Consider the following Solaris shell command and

$ 1s -1id / /.. . /usr/bin sparc*

65138 drwxr-xr-x

3 drwxr-xr-x

3 drwxr-xr-x
65138 drwxr-xr-x
242177 -r-Xr-xr-X
241929 drwxr-xr-x
241930 drwxr-xr-x

8a (4 minutes).

column of the /usr/bin 1ine? W

4
35
35
4
29
2
2

root
root
root
root
root
root
root

bin 716
root a7
root 47
bin 716
bin 9912
bin 11
bin 61

2021-12-01
2022-01-25
2022-01-25
2021-12-01
2011-04-01
2020-11-04
2021-12-01

What is the the significance of
hich, if any of the other lines of

LY

17

its output:

43 .
12:
12:
17:
15;
ke

54 /

54 /..

43 /usr/bin
37 sparc
40 sparcv/

:43 sparcv9

the ‘4’ in the 3rd

output help to explain why that value is 4 instead of something else?

8b (4 minutes). How many subdirectories does ‘/’ have on this system?

Briefly explain.

[page 8]

9 (20 minutes). You are working on a software development project that
is in maintenance mode. You’re the only person working on it. When
you access the repository, you almost always want the most recent
version; it’s rare to access older versions. And when you modify the
source code, you almost always change just one source file.

For your project, compare and contrast the strengths and weaknesses of
the following approaches for doing software maintenance. Assume that
you're equally familiar with all the approaches and do not have to worry
about compatibility with other projects in your organization.

A file system with version numbers

A file system with snapshots

the Source Code Control System (SCCS)
the Revision Control System (RCS)

Git

* ¥ ¥ X ¥

[page 9]
10 (10 minutes). Consider the following Emacs Lisp source code:

(defun what-line ()
(interactive)
(let ((start (point-min))
(n (line-number-at-pos)))
(if (= start 1)
(message "Line %d" n)
(save-excursion
(save-restriction
(widen)
(message "line %d (narrowed line %d)
(+ n (line-number-at-pos start) -1) n))))))

Suppose we remove the ‘(save-excursion’ and ‘(save-restriction’ lines,
and remove two ‘)’s from the end of the last line. How will this
affect the user experience, for those who use ‘what-line’?

[page 10]

11 (15 minutes). Node supports both synchronous I/0, which blocks the
V8 thread until the I/O operation completes, and asynchronous 1/0,
which doesn’t. For example, fs.readFileSync is synchronous whereas
fs.readFile is not. In general, when is it better to use synchronous
I/0, and when is it better to use asynchronous I/0, and why?

[page 11]

12 (15 minutes). ECMAScript 2020 (ES2020) has a feature dynamic
imports, which let you do something like this:

document.getElementById("helpbutton")
.addEventListener("click", async () => {

const { nextPage } = await import("./HelpPage.js");
nextPage();

1

This lets you delay importing HelpPage.js until the user clicks on the
help button.

Discuss some advantages and disadvantages for your project’s using
dynamic imports versus the more-traditional static imports.

[page 12]

13 (8 minutes). Naively one might wonder why GCC has so many
optimization options, and why GCC doesn’t simply generate optimal code
without your having to tell it to. One answer is that there’s a
tradeoff: the more time GCC spends “thinking” about your code, the
higher-performance the generated code can be, and you may prefer
faster compile-time or faster run-time but you can’t have both and so

the -0 flag lets you choose.

This is not the only tradeoff in GCC optimization, though. Give two
other tradeoffs, specify what options are used to control GCC’s
behavior towards those tradeoffs, and say which choice student code

will typically prefer and why.

14 (12 minutes). As mentioned in class, when you debug a program with
GDB there are ordinarily two processes running. Would it make sense,
or even be possible, for GDB to debug itself? Would this involve one

process or two? Or if it’s not possible, can some other debugger debug
GDB? Briefly explain.

[page 13]

15. Consider the following two implementations of the Square
component, discussed in the React tutorial.

class Square extends React.Component {
render() {
return (
<button className="square"
onClick={() => this.props.onClick()}>
{this.props.value}
</button>
);
}
}

function Square(props) {
return (

<button className="square" onClick={props.onClick}>
{props.value}

</button>

);
}

15a (6 minutes). Explain why the class implementation needs ‘this.’
in places where the function implementation does not, and why the
class implementation needs ‘() =>' and ‘()" in places where the
function implementation does not.

15b (6 minutes). Since the function implementation is shorter and
easier to read than the class implementation, why would developers
bother using class implementations in React? Shouldn’t they invariably

prefer function implementations? Briefly discuss.

