UCLA Computer Science 35L final exam - Spring 2020

Name:

Student ID:

180 minutes total, 100 points total, so 1 point = 1.8 minutes.
Open book, open notes, open computer. Answer all questions yourself,
without assistance from other students or outsiders.

The exam is not easy, and you are not expected to answer all the
questions completely. In your answers, overall approach and intuition
will count more than trivial detail. Budget your time while taking
the exam. It may help to skip questions that are harder than their
point count would suggest.

Print the exam, read the first page, then write your starting time on
the first page. Then take at most 180 minutes to answer the questions
and write your answers on the exam. (CAE students with x% extra time
should add to the 180 minutes accordingly.) When you’re done, write
your finishing time on the first page, sign the first page, scan the
completed exam, and upload your scans to CCLE Gradescope as quickly as
you can. If you lack a scanner, carefully photograph the sheets of
paper with your cell phone and upload the photographs. Save your
filled-out exam until the class is over, and do not give or show it to
anybody other than an instructor or TA.

Alternatively, you can use a notepad computer to write your answers
into the PDF and upload the modified PDF. Or you can read the exam on
your laptop’s screen, write your answers on blank sheets of paper
(preferably 85”x11”) with one page per question, and upload the
scanned sheets of paper; at the end of the exam, you should have
scanned and uploaded as many photographs as there are questions (if
you do not answer a question, scan a blank sheet of paper as the
answer).

The exam is open book, open notes, and open computer. You can use
your laptop to use a search engine for answers, and to run programs
designed to help you answer questions. However, do not use your
computer or any other method to communicate with other students or
outsiders, or anything like that. Communicate only via CCLE and
Gradescope to obtain your exam and upload your scanned results, or via
Zoom or email with the instructor or TAs.

Time (Los Angeles time) you started the exam

Time that you ended the exam

IMPORTANT Before submitting the exam, certify that you have read
and abided by the above rules by signing and dating here:

Signature: Date:

[page 2]
1. Suppose you’'ve written your own version of the cat command that,

when called, outputs this to the terminal:

Assume that the full path name for the the directory where the
executable for your personal cat command is stored is:

/u/cs/ugrad/bruin/better_commands/animals

la (3 points). Suppose you’'re working on lnxsrv06 and decide this
version of the command is good enough to be the default version of
‘cat’ for yourself. Write a one line command that will ensure that
when you invoke the ‘cat’ command, you get back the personal version

above.

1b (3 points). Your friends aren’t nearly as impressed by your cat
command as you thought they’d be, so you now decide to retire the
command. You do not delete the executable; that is, the file stored
in the better_commands/animals folder still exists. Write a command
that will ensure that when you now invoke the ‘cat’ command, *after*
the events of (a), you get back the actual Linux concatenate command.

[page 3]

2 (6 points). You and your friend decide that you’'ve had enough of
seeing USC on the news, and you’'d like to create a spam filter to
filter out the unneeded acronym. Write an extended regular expression
that matches any string that consists entirely of the uppercase
letters U and S and C, but with the following restrictions:

* The string must have a length of six.

* The string must have exactly two copies of each letter (two U, two
S, two C).

* The string must start with the letter U and end with the letter C.

* The string must be the concatenation of two substrings, and in
each substring every U must precede every S, and every S must
precede every C. (The two substrings can differ in length and one
substring can be empty.)

Here are some examples of valid matches (one on each line):

USCUSC
USUSCC
UUSSCC

Briefly explain why your regular expression is correct.

Hint: Try writing out the combinations as a tree that will help in
deriving the regular expression.

[page 4]

3a (2 points). Write a Bash command that implements a configuration of
the Caesar cipher (a very simple substitution cipher). The command
should comply with the following specifications:

* Input is from stdin.

* Qutput is to stdout.

* Only substitute lowercase and uppercase ASCII letters.

* Use a right rotation of three places i.e. substitute ‘a’ with ‘d’,
‘b’ with ‘e’, ‘w’ with ‘z’', ‘x’ with ‘a’, and so on. Similarly, do
the same with uppercase letters: substitute ‘A’ with ‘D’, ‘B’ with

‘E', ‘W' with ‘Z’, ‘X’ with ‘A’, and so on.
For example:

Input: afC2xA
OQutput: diF2aD

3b (2 points). Write another Bash command such that the previous
specifications apply, except:

* Substitute lowercase letters ‘x’ through ‘z’ with the ‘@’ character
instead of their previous substitutions.

* Substitute uppercase letters ‘A’ through ‘W’ with the ‘@’ character
instead of their previous substitutions.

For example:

Input: afC2xA
Output: di@2@@

[page 5]
4. The following is a patch for a project you’re working on.

--- a/src/coolors.c 2020-05-31 09:14:41.000000000 -0700
+++ b/src/coolors.c 2020-05-31 09:14:37.000000000 -0700
@@ -1,12 +1,17 @@

+/* Checks that an RGB parameter is valid */

+int is_valid_rgb(int val) {

+ return val >= 0 && val <= 255;

+}

+

/* Convert RGB color to HEX format */
int rgb2hex(int r, int g, int b) {
- if (r>=0 & r <= 255) {
+ if (is_valid_rgb(r)) {
fprintf(stderr, "Invalid red value");
return -1;
- } else if (g >= 0 & g <= 255) {
+ } else if (is_valid_rgb(g)) {
fprintf(stderr, "Invalid green value");
return -1;
} else if (b >= 0 & b <= 255) {

+ } else if (is_valid rgb(b)) {
fprintf(stderr, "Invalid blue value");
return -1;

} else {

4a (1 point). Explain what this patch does at a high level.

4b (1 point). How many lines are added and/or removed by the patch?

4c (2 points). Write a shell command that applies the patch. Assume
coolors.c is in src/coolors.c and the patch file, named cool.patch, is
in the root of the project directory.

[page 6]
5. Zoom is working on a Python tool that extracts info from
password-protected meeting links that follow this format:

* Links start with the base URL "https://zoom.us/j/" or
"https://SUBDOMAIN.zoom.us/j/", where SUBDOMAIN is a non-empty
string of lowercase ASCII letters.

* The base URL is followed by a 9-digit conference ID (e.g.,
356209714) .

* The conference ID is followed by "?pwd=", which is followed by a
32-character alphanumeric ASCII password (e.g.,
JZ9u3x6FVBumItd2Px0rbAApyCv860i3).

Here are some examples that match the format above:

https://zoom.us/j/3562097147?pwd=]Z9u3x6FVBumItd2Px0rbAApyCv860i3
https://ucla.zoom.us/j/7014956237pwd=5915EqMgkRtaeCyrSTXouXeRnaQlSeCm

5a (2 points). Write a regular expression that matches with a valid
base URL.

5b (2 points). Write a regular expression that matches with a valid
9-digit conference ID.

5c¢ (2 points). Write a regular expression that matches with a valid
32-character alphanumeric password.

[continued on next page]

[page 7]

[continued from previous page]

5d (4 points). Write a Python function parse_zoom(link) that takes a
valid meeting link as a string argument, extracts the conference ID
and password using regex, and returns the values as a tuple. The
outputs for the above examples would be:

('356209714"', 'JZ9u3x6FVBumItd2Px0rbAApyCv860i3")
('701495623', '5915EqMgkRtaeCyrSTXouXeRnaQlSeCm')

Python’'s standard library provides the ‘re’ module for regex
operations. To search for a regular expression match in a string, use
re.search(pattern, string). You can retrieve matched substrings in a
regular expression with the help of capture groups and the group()
function. For example,

import re

s = "hello world"

match = re.search("hello (.*)", s) # search for pattern in s
match.group(l) # first capture group result, i.e., "world"

[page 8]

6a (8 points). In the space available below, explain the differences
between the two different 2D arrays declared below, arrl and arr2.
Focus on the underlying memory structure, any performance
implications, and use-cases. Assume that this code appears at the

start of a function body.

const int ROWS
const int COLS

5;
4;

//arrl
int **arrl = malloc(ROWS * sizeof(int *));
for (int i = 0; i < ROWS; i ++)

arrl[i] = malloc(COLS * sizeof(int));

//arr2
int arr2[ROWS][COLS];

6b (2 points). Do the lines of code below make sense? Why or why not?
Assume arr2 is the same as the one declared in part (a) above.

int **arr3 = arr2;
printf("%sp", arr3[2][3]);

[page 9]

7 (4 points). On one running instance, the code below returns 10.
What are two possible reasons why? Is either of those a concern and
why?

return read(STDIN_FILENO, buffer, 50);

8 (6 points). One day you decide that it is annoying and confusing
that EOF is not a real character. So you decide to make a new
language encoding, ASCII-with-EOF, where EOF is a real character. You
do this by replacing ASCII character 28 (the file separator) with EOF
since the file separator control character is very rarely used in any
programming/files. You decide you won’'t miss it.

Now getchar() actually can return a char and read() will also fill in
EOF as a character in the buffer.

What are some cons of this idea? Would you want to permanently use
ASCII-with-EOF for all of your future work?

[page 10]

9. You are a developer at a startup working on a project written in

C. Apart from the C standard library, the project also uses a custom
library you wrote called ‘coolors’. Here’s a code snippet from the

project:

#include "coolors.h"
#include <stdlib.h>

/* Return a random hex color */

int random_hex color() {
int red = random value(0, 256);
int green = random_value(0, 256);
int blue = random value(0, 256);

// Call function in coolors.
int hex = rgb2hex(red, green, blue);
return hex;

9a (2 points). You need to send the compiled executable to quality
assurance (QA) for testing. Which linking method(s) would you use here
to build the program and why? Assume that QA testers use the same
architecture and Linux distribution that you do.

9b (2 points). Write a gcc command to compile the coolors source code,
located in coolors.c, into a shared library, libcoolors.so.

[continued on next page]

[page 11]
[continued from previous page]
9c (6 points). Rewrite the code snippet to dynamically load the

coolors shared library solely to be used within this function.
there is a dynamic loading error and the function doesn’t have a
random hex color to return, the function should return -1.

If

[page 12]

10. You are working on a software project that uses Git as the
dedicated version control system. You clone the remote repository to
a local directory on your computer. Your local repository has the
following commit history:

Cl « C2 (master, origin/master)

where C1l and C2 are commits and C2 is pointed to by the ‘master’ and
‘origin/master’ branch references.

The remote repository also has the following commit history:
Cl « C2 (master)

The following questions depend on each other and should be answered
sequentially.

10a (2 points). You commit a new snapshot to your local ‘master’
branch (assume the new commit is C3). What does your local commit
history look like now? Make sure to draw the commit history (you can
use the format above). Also, explicitly show the updated branch
references and generated commits, if any.

10b (2 points). Unfortunately, someone on your team has pushed new
changes to the remote ‘master’ branch before you could push your local
changes. The remote repository now looks like this:

Cl « C2 « C4 (master)
You pull from the remote repository. What does your local commit
history look like now? Make sure to draw the commit history (you can

use the format above). And explicitly show the updated branch
references and generated commits, if any.

[continued on next page]

[page 13]

[continued from previous page]

10c (3 points). Once again, before you could push your local changes,
someone on your team pushes their work to the remote repository.

(Your team really needs to work on communication.) The remote
repository now looks like this:

Cl « C2 « C4 « C6 (master)

After pulling from the remote repository, what does your local commit
history look like now? Make sure to draw the commit history (you can
use the format above). And explicitly show the updated branch
references and generated commits, if any.

11. Assume your local commit history looks like this:

C2 (feature)
/
Cl « C3 (master)

where C1, C2, C3 are commits and ‘master’, ‘feature’ are branch
references.

1lla (2 points). You are currently on the ‘feature’ branch. You run
‘git rebase master’. What does your local commit history look like
now? Make sure to draw the commit history (you can use the format
above). And explicitly show the updated branch references and
generated commits, if any.

11b (1 point). You now checkout the master branch and invoke ‘git
merge feature’. What type of merge occurs?

[page 14]

12 (6 points). After working for too long on Assignment 9 for CS 35L,
one of your friends decides that the layout of git is just awful, and
they simply don’t like it. In particular, they state the following:

* The .git/object file should have the entire SHA-1 hash as its file
name, instead of the first two characters being used as folder
names and the remaining characters used as a file name inside of
the folder.

* The files inside of .git/object should be uncompressed, so they
don’t have to take the useless extra step of decompressing files.

* Keeping all SHA-1 hashes for all git objects together inside of the
.git/objects folder is too confusing; they should be separated into
three different folders - .git/objects/commits, .git/objects/trees,
.git/objects/blobs.

For each of the three points above, argue why your friend may be
correct, or why your friend may be incorrect. Write only 1 - 2
sentences per bullet point.

[page 15]
13. For the following questions, use the commit graph below. Assume
that cl is the oldest commit, and that each commit points to its child

commits.

cl - c2 - c3 - clo
\
c4 - ¢c7 - c8 - c9
\ /
c5 - c6

13a (2 points). Give a valid topological ordering of this graph. You
do not need to list branch names, or use the sticky start/end
notation from Assignment 9.

13b (2 points). Suppose I pull a copy of commit c7 to my own local
machine, and I use git log to read through commit messages for this
project. Of the 10 commits, which commit messages will I not be able

to read from my copy?

[page 16]

14. Suppose you are worried that someone has broken into your SEASnet
GNU/Linux server and installed both a packet sniffer and a file
sniffer. Both sniffers are malware in your server’s operating system.
The packet sniffer snoops on all data sent to or from the network, and
the file sniffer snoops on all data being read from or written to
files. While the sniffers are installed, you login into the server
via SSH and do Assignment 1.

14a (1 minute). Can the attacker now get a copy of your solution to
Assignment 1?7 Briefly explain.

14b (2 minutes). Can the attacker now pretend to be you to log into
the same server via SSH? Briefly explain.

1l4c (2 minutes). Can the attacker now set up a fake SSH server of
his own, one that you can mistakenly log into? Briefly explain.

[page 17]

14d (5 minutes). Suppose instead you are worried that someone has
broken into your SEASnet GNU/Linux server and installed a pipe
sniffer, that is, a piece of malware in your server’s operating system
that snoops on data going through pipes. You are worried that the
pipe sniffer will get a copy of the data flowing through the pipe

in the following shell script:

#!/bin/sh
sed 's/a/b/; /lambda/d; s/x/yy/g' | uniq -c

Your friend says, “Don’t worry; you can easily modify your script to
use ssh so that the pipe sniffer will see only encrypted data.” Does
your friend’s remark make sense? If so, show how to modify the script
along the lines that your friend suggested, so that it is as efficient
as possible (for example, it works well even if a lot of data passes
through the pipe); if not, explain why not.

[page 18]
19 (10 points). Consider the following discussion taken from
a recent review of computer application technology:

The doubling of the number of transistors on a chip every 2 years,
a seemly inevitable trend that has been called Moore’s law, has
contributed immensely to improvements in computer performance.
However, silicon-based transistors cannot get much smaller than
they are today, and other approaches should be explored to keep
performance growing.... Software performance engineering,
development of algorithms, and hardware streamlining at the Top can
continue to make computer applications faster in the post-Moore
era. Unlike the historical gains at the Bottom, however, gains at
the Top will be opportunistic, uneven, and sporadic. Moreover,
they will be subject to diminishing returns as specific
computations become better explored.

Source:

Leiserson CE, Thompson NC, Emer JS, et al.

There’s plenty of room at the Top:

What will drive computer performance after Moore’s law?
Science. 2020-06-05;368(6495) :eaam9744.
https://dx.doi.org/10.1126/science.aam9744

Discuss the relationship of Leiserson et al.’s thesis about computer
application development to the technology that you covered in your
Assignment 10 presentation. If your Assignment 10 technology 1is
largely unrelated to the thesis, briefly state why your technology
will be unaffected even if the thesis turns out to be true, and
discuss how how the thesis is related machine-learning applications
that attempt to predict COVID-19 outbreaks.

