
CS 97 Final Fall ’20
1. The Liddil test checks whether the strings A and B are known to name

the same file. It works this way:

• Run the shell command ls -Liddil with the two operands A and B.

• If the command fails, the Liddil test fails.

• Otherwise, compare the two lines of output. The strings A and B name
the same file if and only if the two lines are the same, except for the
occurrences of ‘A’ and ‘B’ at the respective ends.

This test assumes you are running on SEASnet, are testing files in your home
directory, and .snapshot directories are not involved; you can continue to make
these assumptions in the Liddil test questions.

Simplify the description of the Liddil test as best you can, while staying within
the constraints of using the ls command to implement it. Describe why each
simplification works, and explain why other plausible simplifications would not
work.

2. Write a shell command named Liddil-test that quietly succeeds if given
two operands for which the Liddil test succeeds, quietly fails if given two
operands for which the Liddil test fails, and fails with a diagnostic otherwise.
For example, on SEASnet, Liddil-test /bin/sh /usr/bin/bash should
succeed, whereas Liddil-test '' / should quietly fail because the empty
string does not name a file. When given two operands your command
should not generate any output: it should merely succeed or fail, so that
the user can write a shell command like this:

if Liddil-test /bin/sh /usr/bin/bash; then
echo 'same file'

else
echo 'differing files'

fi

without getting any stray messages. Your command should not take any options,
and should treat all operands as file names even if they begin with ‘-’; for example,
Liddil-test -E . should quietly fail unless you happen to have a symbolic
link like -E -> ..

3. Suppose some other program is modifying the file system at the same time
that your Liddil-test program runs. How would this affect the validity of
your program’s results? Briefly explain.

1



4. In .git/objects Git splits the 40-character SHA-1 text checksum into two
parts, of length 2 and 38 characters respectively. Why doesn’t Git instead
split them into equal parts of 20 characters each? Wouldn’t that be fairer
or more efficient in some way? Or, of 2 vs 38 is good, why wouldn’t 1 vs
39 (or 3 vs 37, etc.) be better? Briefly explain.

5. Data backup systems use deduplication, compression, and encryption
heavily. Compare and contrast their use of these three technologies to how
Git uses them. Assume Git plumbing only; do not worry about porcelain
or add-ons.

6. Suppose you wanted to add checkpoint/restart capability to a working
randall program running on SEASnet. The idea is that you run the program
like this:

randall 100000000000 >output

and that if the system crashes while in the middle of a run, after it reboots you
can continue where you left off by doing this:

randall 100000000000 >>output

Explain how to modify your randall implementation to support checkpoint/restart
in this way by using functions like fseek, ftell, or lseek. Use explicit code
snippets in your explanation where appropriate. Explain what trouble your
modifications would have when doing checkpoint/restart if the modified randall
outputs to a pipe to some other program, instead of outputting to regular file.

7. Compare and contrast the following approaches to detecting and/or pre-
venting integer overflow errors in your C or C++ programs:

run the program under GDB

gcc -Wall -Wextra
gcc -fsanitize=undefined

rewrite your program in: Emacs Lisp JavaScript Python

8. Consider the following potential criticisms of Node.js:

• It doesn’t support multithreaded applications, which makes many apps
hard to scale.

• It’s tied closely to Google’s V8 JavaScript engine, and so is not portable
to other platforms.

2



• It’s too low level; if you want to build a real app you must write everything
nearly from scratch, or pull in other peoples’ code like crazy.

• JSX is too complicated and its learning curve is too steep, compared to
other approaches.

Add one other reasonable criticism to this list.

For each of the five criticisms (the above four, plus your fifth):

• Argue that the criticism is a reasonable one, as best you can.

• Give a defense of Node.js against the criticism, as best you can.

• Explain how well the criticism applies to the project that you worked on
for this course.

9. The man page for git merge has the following words of wisdom:

Running git merge with non-trivial uncommitted changes is discouraged: while
possible, it may leave you in a state that is hard to back out of in the case of a
conflict.

Write a shell script that illustrates this advice. Your shell scrimpt should set
up a Git repository and working files from scratch (no fair cloning from any
other source), and run git merge with nontrivial uncomitted changes. Explain
the resulting state, and why this sort of state is hard to back out of in the
more-typical case where you don’t have a complete shell script that you can
replay.

10. The man page for git rebase does not have words of wisdom that are like
those mentioned in the previous (git merge) question. Should it? Briefly
explain.

11. Suppose we want to reimplement Emacs using Node.js and React, instead
of the existing Emacs code base that uses C as its core. We want existing
Emacs scripts and and keystrokes to work unchanged, so that current users
can continue to get their work done.

Does this idea make sense? Briefly explain why or why not. Either way, give
the biggest obstacles you see to making it work.

12. Assuming you could pull off the idea of reimplementing Emacs in Node.js
and React, how does it compare to the existing practice of using Emacs as
a development environment for Node.js and React applications? Would

3



there be significant advantages to the proposed implementation compared
to the current one? Briefly explain.

4


	CS 97 Final Fall ’20

