Quiz 3 Solutions
Question 1. (5 points) Find the maxima and minima of the function
Fa,y,2) = 32" +y* + 27

on the surface 22 + 42 + 322 = 3.

The surface is an ellipsoid, which is closed and bounded. Also, f is continuous. Therefore there is a point (L, Ym, 2m)
attaining the minimum and a point (x 7, yar, zar) attaining the maximum.

The constraint equation is 2 +y% 4 322 = 3. The functions x? + 12 + 322 and f are totally differentiable everywhere.
By the theorem of Lagrange multipliers, at each of (Z,,, Ym, 2m) and (a7, yar, 2as), either the gradient of 2% 43?4322
is 0, or the gradient of f is a (possibly 0) scalar multiple of 2 + 3% + 322

The gradient of 2 + y? + 322 at any point (9, Yo, 20) is (20, 20, 620) which is only 0 at (z9, yo, 20) = (0,0, 0), but
this is not on the surface x2 4+ y2 4+ 322 = 3 so it is impossible for the gradient of x2 + y? 4 322 to be 0 at either
(T, Yms 2m) OF (Tar, Ynss 201)-

Therefore, at each of (2, Ym, 2m) and (zar, yar, 2ar), the gradient of f is a (possibly 0) scalar multiple of 22+ 32 +322.
The gradient of f at any point (20, yo, 20) is (620, 2y0, 220)-

We get that there exists some A € R such that

62, = \22,,
2Ym = N2y,
22m = A6z,

T+ Y + 32, =3

and the same equations with each of x,,, Yy, 2, replaced with z a7, yas, zpr, respectively.
We can rearrange each of the first 3 equations to get

(6 — 2)\)zm =0
(2= 6)) 2, = 0.

At most one of 6 — 2\, 2 — 2,2 — 6\ can be 0 (because no real value of A will make more than one of them 0), so at
least two of &, Ym, 2m are 0.

Combining this with 22, + y2 + 322, = 3 gives that (Zm,Ym,2m) must be one of the points
(0,0,1),(0,0,—-1),(0,/3,0), (0, —/3,0), (+/3,0,0), (—/3,0,0).

The same analysis shows that (27, yar, 2ar) must also be one of those points.

We conclude that (at least) one of the points (0,0, 1), (0,0, —1), (0,4/3,0), (0, —/3,0), (v/3,0,0), (—/3, 0, 0) minimizes
f over the surface 2% + 32 + 322 = 3, and (at least) one of them maximizes f over this surface.

To find out which one(s) minimize/maximize f, we evaluate at each point:

The last 4 points do not minimize f over the surface 22 + y? + 322 = 3, because a lower value of f can be attained
at (0,0,+1). We conclude that (2, Ym, zm) must be one of (0,0,+1), and hence f(Zu, Ym, zm) = 1. Therefore, the
minimum of f over the surface 22 + y? + 322 = 3 is 1, attained at (0,0, £1).

Similarly, the maximum is 9, attained at (v/3,0,0).




Question 2. Let a and b be positive real numbers such that a < b.

(a) (3 points) Determine the global maxima and minima of the function
fla,y) = (aa® + by?)e "V

whose domain is the whole plane R2.

(b) (2 points) Find the maxima and minima of f(z,y) on the unit circle 2% + y? = 1.

(a) Solution 1: To find the minimum, both factors are nonnegative, so f(x,y) > 0 for all (x,y) € R?; furthermore,
the second factor e=*" %" is never 0, and the first factor (az? + by?) is 0 only at the origin. So f(0,0) =0 =
ming, ,)er2 f(2,%), and f(z,y) >0 = f(0,0) for any point (z,y) # (0,0), so the minimum is 0 which is attained
only at (0,0).

To find the maximum, we first reduce the problem to a maximization problem over a closed, bounded region.
For any r > 0, the closed disk 22 + y? < r? is closed and bounded.

Because exponentials grow faster than polynomials, for each ¢ > 0, there exists 7. > 0 such that az? + by? <
ee® " for all (z,y) with 22 + 32 > 72 (indeed, az? + by® < a(x? + y?) + b(x% + y?) = (a + b)(2% + y) which is
less than ee® +¥” for large values of 22 + y?). Then f(x,y) < € for (z,y) satisfying 2% + y? > r2.

Taking ey = f(1,1)/2, we get that, if (xa7,yar) is a maximizer of f over the closed disk z? +y? < 2 (which
exists by the extreme value theorem, because this closed disk is closed and bounded and f is continuous on this
disk), then for any point (z,y) outside this disk, f(xar,ya) > f(1,1) > €9 > f(x,y). (Here, we use that (1,1)
must be in the disk, because f(1,1) > €.)

We conclude that for any point (z,y) € R2, f(xar,yn) > f(x,y), so a maximizer of f over the closed disk
2% 4+ y? < r2 is a global maximizer of f.

Conversely, if (x 7, yar) is any global maximizer of f, then f(xnr, yar) > f(1,1) > €, and hence (57, yps) must
be in the disk 22 + y* < 72, and therefore must be a maximizer of f over the disk.

We conclude that a point (z,y) is a global maximizer of f if and only if (x,y) is a maximizer of f over the disk
22+ % < T?O.

Next, we show that any maximizer of f over the disk must be in the interior of the disk. Indeed, for any point
(x,7) on the boundary, 2% + y* = rfo, so f(z,y) <e= f(1,1)/2 < f(1,1), so (x,y) cannot be maximizer of f
over the disk because (1, 1) is a point in the disk attaining a larger value.

We have shown that any maximizer (xr,yar) of f over the disk must be in the interior of the disk. Because
f has partial derivatives everywhere in the disk (in fact, it is totally differentiable everywhere), f.(znr,ynm) =
fy(@ar,yar) = 0 (where subscripts denote partial derivatives). Expanding,

Qaxpre "MV 4 (az?, + by%)(—Z)xMefx?nyif =0

2bynre™" MV + (azfy + byRp)(~2)yare "V =0,
Factoring,
2 2
2e "M Yy (0 — axs; — bys;) =0
26_“”?\4_3’12”3/1\/[(19 —ax3; —byi;) = 0.

From the first equation, either zp; = 0 or a — az3; — by3; = 0 (or both). From the second equation, either
ym =0 or b—ax?, — byi, =0 (or both).




We get the following 4 possibilities, at least one of which must occur:
e z); =0 and yp = 0: In this case (zar, yar) = (0,0) (I will defer ruling this out until after examining all cases).
e )y =0 and b— az%; — by, = 0: In this case (zrr,ynr) = (0,£1).
e a—ax3;, —byi, =0 and ypr = 0: In this case (zpr,yn) = (£1,0).
e a—azi; —byi, =0 and b— az?; — byi, = 0: Impossible, because the first equation implies az3, + by3, = a,
and the second implies az3, + by32, = b, but a < b.

So (zar,yar) must be one of (0,0), (0,+1), (£1,0).
Evaluating at each point:

(z,y)  flz.y)
(0,0) 0

(0,£1)  be !
(£1,0) ae!

and as a < b, the largest of these is be™!, so the maximum is be~! attained at (0, +1).

Solution 2: on any circle given by an equation of the form z2 + y? = r? (allowing the degenerate circle when r = 0),
we can write f as

flzy) = (ar? + (b —a)y)e "

and the maximum/minimum over the circle could be determined using the theorem of Lagrange multipliers, but a
faster way is to observe that the restriction of f to this circle is maximized/minimized precisely when y? is, which
occurs at (0,%r). We can compute the maximum value over the circle to be br2e=""

Similarly, the set of points that minimize y* over the circle (and hence that minimize f over the circle) are (&r,0),
and the minimum value is ar2e="".

For each 7 > 0, let (2, ar, yrar) denote any maximizer of f over the circle 22 + y? = 72 (which exists because we just
showed that (0,r) is a maximizer).

A point (z,y) is a global maximizer for f if and only if f(x,y) > f(ra,Yr ) for all 7 > 0 (indeed, by definition,
(z,y) is a global maximizer if and only if f(x,y) > f(xo,y0) for all (xg,y0) € R?, so if (x,y) is a global maximizer
then f(x,y) > f(xrm,yrn) for all » > 0, and conversely if f(z,y) > f(z,ar,yra) for all ¥ > 0 then for any

(zo,y0) € R?, f(z,y) > f(x\/z%yg’M,y\/ngrygyM) > f(wzo,yo) where the latter inequality is because (xg, o) is on

2
the circle 22 + y? = /22 + 43 ).

Furthermore, if (xa,yn) is a global maximizer of f, then so is (:E\/M’M,y x?w+y]2\47M), because

. . 2
f(x\/m,M,y\/m)M) > f(xar,ym) (because (zar,yar) is on the circle 22 +y? = /232, +y3, ).

Using our computation we did above of the maximum of f over each circle 22 + y? = 72, a point (x,y) is a global
maximizer for f if and only if f(z,y) > f(zyr,Yrm) = br2e="" for all r > 0. By single variable calculus, br2e~"" is
maximized at r = 1 (indeed, j‘lTl)?“Qe_T2 = (2br — br22r)e="" = 2bre="" (1 — r2), which is positive for 0 < r < 1 and
negative for 1 < r, so br2e~"" increases from r = 0 to r = 1 and then decreases after that). So a point (z,y) is a
global maximizer for f if and only if f(x,y) > f(x1,m,y1,m), and furthermore f(x, as,yr ar) attains a value at least
as large as f(z1 ar,y1,m) only at r = 1.

Combining the previous 2 paragraphs, if (z,y) is a global maximizer, then 22 +y? = 1, and a point (z,y) is a global
maximizer if and only if it maximizes f over the unit circle. Using our computation of the maximizers of f over the
unit circle, the global maximum of f is f(z1 ar,y1.m) = be™! attained only at (0, £1).

Similarly, letting (2, ., ¥rm) denote any minimizer of f over the circle 2% + y* = 72, a point (z,y) is a global
minimizer for f if and only if f(z,y) < f(Zrm,Yrm) = ar?e="" for all 7 > 0. The right hand side is > 0, with
equality if and only if » = 0. By more similar arguments, the global minimum of f is f(2o,m,Yo,m) = 0 attained only

at (0,0).




(b) In the previous part of this problem, we showed that (0,+1) attain the max-
imum value of f over all of R?. Therefore, f(0,+1) must be at least as large
as f(xz,y) for any (x,y) on the unit circle.

As (0,£1) are on the unit circle, this implies (0, +1) maximize f over the unit
circle.

Also, in the previous part of this problem, we showed that (0, £1) are the only
points that attain the maximum value of f over R2, so in particular no other
points on the unit circle can attain the value of f(0,£1).

Therefore, the maximum value of f over the unit circle is f(0, 1) = b, attained
at (0,%1).

For the minimum: on the unit circle, the factor eV’ is always e~
equivalent to minimize (az? + by®)e~! over the unit circle.

L so it is

Solution 1: (az? + by?)e~! is continuous, and the unit circle is closed and
bounded, so a minimizer (z,,, y,) exists.

Both (ax? + by?)e~! and 22 + y? are totally differentiable on R?, and the
gradient of 2 + y? is (2z,2y) which is never 0 on the unit circle, so by the
theorem of Lagrange multipliers, there is some A € R such that

0
—(ax2 + by2)e*1 lo—z,, = 2axme " = A2,

or

0
6—y(ax2 +oyH)e ! Tymy,, = 2byme " = X2y,

o+ Y = L.
Factoring the first two equations,
22, (ae™ —N\) =0

2ym(be™t — ) = 0.

Because a < b, it is impossible for both ae™! — X = 0 and be™* — X = 0, so
at least one of x,,,y,, must be 0. The only points on the unit circle with at
least one coordinate 0 are (0,+1) and (£1,0). Evaluating, f(0,+1) = be™!
and f(#1,0) = ae™!, and using a < b, this implies the minimum of f over the
unit circle is ae™!, attained only at (+1,0).

Solution 2: (Essentially, doing the computation we did in Solution 2 for part
(a) of ths problem.) (ax? + by?)e™! = (a(z? +3?) + (b — a)y?)e™ !, and again
using 72 + y? = 1 on the domain of interest, f(x,y) = (a + (b — a)y?)e! for
all points (z,y) on the unit circle 22 4+ y% = 1.

Since this is linear in y? with positive slope, this is minimized when %2 is
minimized, which occurs precisely at (£1,0).

The value of f at these points can be computed to be ae™!.




