
Quiz 3 Solutions

Question 1. (5 points) Find the maxima and minima of the function

f(x, y, z) = 3x2 + y2 + z2

on the surface x2 + y2 + 3z2 = 3.

The surface is an ellipsoid, which is closed and bounded. Also, f is continuous. Therefore there is a point (xm, ym, zm)
attaining the minimum and a point (xM , yM , zM ) attaining the maximum.
The constraint equation is x2+y2+3z2 = 3. The functions x2+y2+3z2 and f are totally differentiable everywhere.
By the theorem of Lagrange multipliers, at each of (xm, ym, zm) and (xM , yM , zM ), either the gradient of x2+y2+3z2

is 0, or the gradient of f is a (possibly 0) scalar multiple of x2 + y2 + 3z2.
The gradient of x2 + y2 + 3z2 at any point (x0, y0, z0) is ⟨2x0, 2y0, 6z0⟩ which is only 0 at (x0, y0, z0) = (0, 0, 0), but
this is not on the surface x2 + y2 + 3z2 = 3 so it is impossible for the gradient of x2 + y2 + 3z2 to be 0 at either
(xm, ym, zm) or (xM , yM , zM ).
Therefore, at each of (xm, ym, zm) and (xM , yM , zM ), the gradient of f is a (possibly 0) scalar multiple of x2+y2+3z2.
The gradient of f at any point (x0, y0, z0) is ⟨6x0, 2y0, 2z0⟩.
We get that there exists some λ ∈ R such that

6xm = λ2xm

2ym = λ2ym

2zm = λ6zm

x2
m + y2m + 3z2m = 3

and the same equations with each of xm, ym, zm replaced with xM , yM , zM , respectively.
We can rearrange each of the first 3 equations to get

(6− 2λ)xm = 0

(2− 2λ)ym = 0

(2− 6λ)zm = 0.

At most one of 6− 2λ, 2− 2λ, 2− 6λ can be 0 (because no real value of λ will make more than one of them 0), so at
least two of xm, ym, zm are 0.
Combining this with x2

m + y2m + 3z2m = 3 gives that (xm, ym, zm) must be one of the points
(0, 0, 1), (0, 0,−1), (0,

√
3, 0), (0,−

√
3, 0), (

√
3, 0, 0), (−

√
3, 0, 0).

The same analysis shows that (xM , yM , zM ) must also be one of those points.
We conclude that (at least) one of the points (0, 0, 1), (0, 0,−1), (0,

√
3, 0), (0,−

√
3, 0), (

√
3, 0, 0), (−

√
3, 0, 0) minimizes

f over the surface x2 + y2 + 3z2 = 3, and (at least) one of them maximizes f over this surface.
To find out which one(s) minimize/maximize f , we evaluate at each point:

(x, y, z) f(x, y, z)
(0, 0, 1) 1
(0, 0,−1) 1

(0,
√
3, 0) 3

(0,−
√
3, 0) 3

(
√
3, 0, 0) 9

(−
√
3, 0, 0) 9

The last 4 points do not minimize f over the surface x2 + y2 + 3z2 = 3, because a lower value of f can be attained
at (0, 0,±1). We conclude that (xm, ym, zm) must be one of (0, 0,±1), and hence f(xm, ym, zm) = 1. Therefore, the
minimum of f over the surface x2 + y2 + 3z2 = 3 is 1, attained at (0, 0,±1).
Similarly, the maximum is 9, attained at (±

√
3, 0, 0).
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Question 2. Let a and b be positive real numbers such that a < b.

(a) (3 points) Determine the global maxima and minima of the function

f(x, y) = (ax2 + by2)e−x2−y2

whose domain is the whole plane R2.

(b) (2 points) Find the maxima and minima of f(x, y) on the unit circle x2 + y2 = 1.

(a) Solution 1: To find the minimum, both factors are nonnegative, so f(x, y) ≥ 0 for all (x, y) ∈ R2; furthermore,

the second factor e−x2−y2

is never 0, and the first factor (ax2 + by2) is 0 only at the origin. So f(0, 0) = 0 =
min(x,y)∈R2 f(x, y), and f(x, y) > 0 = f(0, 0) for any point (x, y) ̸= (0, 0), so the minimum is 0 which is attained
only at (0, 0).

To find the maximum, we first reduce the problem to a maximization problem over a closed, bounded region.
For any r > 0, the closed disk x2 + y2 ≤ r2 is closed and bounded.

Because exponentials grow faster than polynomials, for each ϵ > 0, there exists rϵ > 0 such that ax2 + by2 ≤
ϵex

2+y2

for all (x, y) with x2 + y2 ≥ r2ϵ (indeed, ax2 + by2 ≤ a(x2 + y2) + b(x2 + y2) = (a+ b)(x2 + y2) which is

less than ϵex
2+y2

for large values of x2 + y2). Then f(x, y) ≤ ϵ for (x, y) satisfying x2 + y2 ≥ r2.

Taking ϵ0 = f(1, 1)/2, we get that, if (xM , yM ) is a maximizer of f over the closed disk x2 + y2 ≤ r2ϵ0 (which
exists by the extreme value theorem, because this closed disk is closed and bounded and f is continuous on this
disk), then for any point (x, y) outside this disk, f(xM , yM ) ≥ f(1, 1) > ϵ0 > f(x, y). (Here, we use that (1, 1)
must be in the disk, because f(1, 1) > ϵ0.)

We conclude that for any point (x, y) ∈ R2, f(xM , yM ) ≥ f(x, y), so a maximizer of f over the closed disk
x2 + y2 ≤ r2ϵ0 is a global maximizer of f .

Conversely, if (xM , yM ) is any global maximizer of f , then f(xM , yM ) ≥ f(1, 1) > ϵ0, and hence (xM , yM ) must
be in the disk x2 + y2 ≤ r2ϵ0 , and therefore must be a maximizer of f over the disk.

We conclude that a point (x, y) is a global maximizer of f if and only if (x, y) is a maximizer of f over the disk
x2 + y2 ≤ r2ϵ0 .

Next, we show that any maximizer of f over the disk must be in the interior of the disk. Indeed, for any point
(x, y) on the boundary, x2 + y2 = r2ϵ0 , so f(x, y) ≤ ϵ = f(1, 1)/2 < f(1, 1), so (x, y) cannot be maximizer of f
over the disk because (1, 1) is a point in the disk attaining a larger value.

We have shown that any maximizer (xM , yM ) of f over the disk must be in the interior of the disk. Because
f has partial derivatives everywhere in the disk (in fact, it is totally differentiable everywhere), fx(xM , yM ) =
fy(xM , yM ) = 0 (where subscripts denote partial derivatives). Expanding,

2axMe−x2
M−y2

M + (ax2
M + by2M )(−2)xMe−x2

M−y2
M = 0

2byMe−x2
M−y2

M + (ax2
M + by2M )(−2)yMe−x2

M−y2
M = 0.

Factoring,

2e−x2
M−y2

MxM (a− ax2
M − by2M ) = 0

2e−x2
M−y2

M yM (b− ax2
M − by2M ) = 0.

From the first equation, either xM = 0 or a − ax2
M − by2M = 0 (or both). From the second equation, either

yM = 0 or b− ax2
M − by2M = 0 (or both).

2



We get the following 4 possibilities, at least one of which must occur:

� xM = 0 and yM = 0: In this case (xM , yM ) = (0, 0) (I will defer ruling this out until after examining all cases).

� xM = 0 and b− ax2
M − by2M = 0: In this case (xM , yM ) = (0,±1).

� a− ax2
M − by2M = 0 and yM = 0: In this case (xM , yM ) = (±1, 0).

� a − ax2
M − by2M = 0 and b − ax2

M − by2M = 0: Impossible, because the first equation implies ax2
M + by2M = a,

and the second implies ax2
M + by2M = b, but a < b.

So (xM , yM ) must be one of (0, 0), (0,±1), (±1, 0).
Evaluating at each point:

(x, y) f(x, y)
(0, 0) 0
(0,±1) be−1

(±1, 0) ae−1

and as a < b, the largest of these is be−1, so the maximum is be−1 attained at (0,±1).

Solution 2: on any circle given by an equation of the form x2 + y2 = r2 (allowing the degenerate circle when r = 0),
we can write f as

f(x, y) = (ar2 + (b− a)y2)e−r2

and the maximum/minimum over the circle could be determined using the theorem of Lagrange multipliers, but a
faster way is to observe that the restriction of f to this circle is maximized/minimized precisely when y2 is, which

occurs at (0,±r). We can compute the maximum value over the circle to be br2e−r2 .
Similarly, the set of points that minimize y2 over the circle (and hence that minimize f over the circle) are (±r, 0),

and the minimum value is ar2e−r2 .
For each r ≥ 0, let (xr,M , yr,M ) denote any maximizer of f over the circle x2 + y2 = r2 (which exists because we just
showed that (0, r) is a maximizer).
A point (x, y) is a global maximizer for f if and only if f(x, y) ≥ f(xr,M , yr,M ) for all r ≥ 0 (indeed, by definition,
(x, y) is a global maximizer if and only if f(x, y) ≥ f(x0, y0) for all (x0, y0) ∈ R2, so if (x, y) is a global maximizer
then f(x, y) ≥ f(xr,M , yr,M ) for all r ≥ 0, and conversely if f(x, y) ≥ f(xr,M , yr,M ) for all r ≥ 0 then for any
(x0, y0) ∈ R2, f(x, y) ≥ f(x√

x2
0+y2

0 ,M
, y√

x2
0+y2

0 ,M
) ≥ f(x0, y0) where the latter inequality is because (x0, y0) is on

the circle x2 + y2 =
√
x2
0 + y20

2
).

Furthermore, if (xM , yM ) is a global maximizer of f , then so is (x√
x2
M+y2

M ,M
, y√

x2
M+y2

M ,M
), because

f(x√
x2
M+y2

M ,M
, y√

x2
M+y2

M ,M
) ≥ f(xM , yM ) (because (xM , yM ) is on the circle x2 + y2 =

√
x2
M + y2M

2
).

Using our computation we did above of the maximum of f over each circle x2 + y2 = r2, a point (x, y) is a global

maximizer for f if and only if f(x, y) ≥ f(xr,M , yr,M ) = br2e−r2 for all r ≥ 0. By single variable calculus, br2e−r2 is

maximized at r = 1 (indeed, d
dr br

2e−r2 = (2br − br22r)e−r2 = 2bre−r2(1 − r2), which is positive for 0 < r < 1 and

negative for 1 < r, so br2e−r2 increases from r = 0 to r = 1 and then decreases after that). So a point (x, y) is a
global maximizer for f if and only if f(x, y) ≥ f(x1,M , y1,M ), and furthermore f(xr,M , yr,M ) attains a value at least
as large as f(x1,M , y1,M ) only at r = 1.
Combining the previous 2 paragraphs, if (x, y) is a global maximizer, then x2 + y2 = 1, and a point (x, y) is a global
maximizer if and only if it maximizes f over the unit circle. Using our computation of the maximizers of f over the
unit circle, the global maximum of f is f(x1,M , y1,M ) = be−1 attained only at (0,±1).
Similarly, letting (xr,m, yr,m) denote any minimizer of f over the circle x2 + y2 = r2, a point (x, y) is a global

minimizer for f if and only if f(x, y) ≤ f(xr,m, yr,m) = ar2e−r2 for all r ≥ 0. The right hand side is ≥ 0, with
equality if and only if r = 0. By more similar arguments, the global minimum of f is f(x0,m, y0,m) = 0 attained only
at (0, 0).
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(b) In the previous part of this problem, we showed that (0,±1) attain the max-
imum value of f over all of R2. Therefore, f(0,±1) must be at least as large
as f(x, y) for any (x, y) on the unit circle.

As (0,±1) are on the unit circle, this implies (0,±1) maximize f over the unit
circle.

Also, in the previous part of this problem, we showed that (0,±1) are the only
points that attain the maximum value of f over R2, so in particular no other
points on the unit circle can attain the value of f(0,±1).

Therefore, the maximum value of f over the unit circle is f(0,±1) = b, attained
at (0,±1).

For the minimum: on the unit circle, the factor e−x2−y2

is always e−1, so it is
equivalent to minimize (ax2 + by2)e−1 over the unit circle.

Solution 1: (ax2 + by2)e−1 is continuous, and the unit circle is closed and
bounded, so a minimizer (xm, ym) exists.

Both (ax2 + by2)e−1 and x2 + y2 are totally differentiable on R2, and the
gradient of x2 + y2 is ⟨2x, 2y⟩ which is never 0 on the unit circle, so by the
theorem of Lagrange multipliers, there is some λ ∈ R such that

∂

∂x
(ax2 + by2)e−1 ↾x=xm

= 2axme−1 = λ2xm

∂

∂y
(ax2 + by2)e−1 ↾y=ym

= 2byme−1 = λ2ym

x2
m + y2m = 1.

Factoring the first two equations,

2xm(ae−1 − λ) = 0

2ym(be−1 − λ) = 0.

Because a < b, it is impossible for both ae−1 − λ = 0 and be−1 − λ = 0, so
at least one of xm, ym must be 0. The only points on the unit circle with at
least one coordinate 0 are (0,±1) and (±1, 0). Evaluating, f(0,±1) = be−1

and f(±1, 0) = ae−1, and using a < b, this implies the minimum of f over the
unit circle is ae−1, attained only at (±1, 0).

Solution 2: (Essentially, doing the computation we did in Solution 2 for part
(a) of ths problem.) (ax2 + by2)e−1 = (a(x2 + y2) + (b− a)y2)e−1, and again
using x2 + y2 = 1 on the domain of interest, f(x, y) = (a + (b − a)y2)e−1 for
all points (x, y) on the unit circle x2 + y2 = 1.

Since this is linear in y2 with positive slope, this is minimized when y2 is
minimized, which occurs precisely at (±1, 0).

The value of f at these points can be computed to be ae−1.
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