My sites / 21F-LIFES	SCI7A-2 / Midterm 2 / LS 7A Fall 2021 Midterm 2 Group Phase	Fall	12021 - Week 10
Fall 2021 - LIFESCI7A	-2 / LIFESCI7A-3 - CHEN / MALOY		
Started on	Friday, 12 November 2021, 4:24 PM PST		
State	Finished		
Completed on	Friday, 12 November 2021, 4:29 PM PST		
Time taken	5 mins 4 secs		
Information			

In addition to the figures associated with different problems throughout the exam, you may refer to the following figures if you find them useful:

H₃C

(Fd)

H+

NADP+

reductase

6 ATP

6 ADP + 6 P;

6 NADPH

Light

NH

Purines are

larger than pyrimidines

You are interested in joining a lab at UCLA to study SARS-CoV-2, the coronavirus that causes COVID. Your lab is hoping to learn more about the virus to develop new treatments. To study this virus in the lab, you plan on infecting cells obtained from mice. You learn from your new lab mates that the mouse genome follows the same rules of DNA base composition and base pairing that you learned about in class. Given this information, what can you conclude about the genome of your mouse cells?

Question 1
Complete
Not graded
Mouse DNA must contain equal amounts of thymine and cytosine.
Select one:
🔘 a. True
💿 b. False
Not are de d
Not graded
Mouse DNA must contain the same number of purines and pyrimidines.
Select one:
• a. True
U b. False
Question 3
Complete
Not graded
Mouse DNA must contain the same cytosine/thymine ratio as humans.
Select one:
O a. True

💿 b. False

Information

SARS-CoV-2 uses a protein on its surface called "S Protein" to bind to and infect human cells. To study this protein, you create a double stranded DNA sequence that contains the gene for S Protein. Since you learned in LS 7A that a double stranded piece of DNA can contain multiple genes that are transcribed in opposite directions, you also include the sequence for another unrelated gene (Gene X) on the opposite strand. Your double stranded DNA sequence is shown below.

This DNA sequence contains no introns. The three dots in the middle of the sequence indicate that there are an additional 3,735 base pairs in the middle of this DNA sequence that are not shown here, which can be assumed to not contain any stop codons. The boxed base pairs represent the +1 transcription start site for the two genes. The three dots on either side of the DNA sequence indicate that this sequence can be assumed to extend beyond your computer screen on both sides, and the promoter(s) for the S Protein gene and Gene X are located somewhere off of your computer screen. Use this figure and the codon chart below to answer the following questions.

			Second	letter			
		U	С	Α	G		
	U	UUU UUC UUA UUG	UCU UCC UCA UCG	UAU UAC UAA Stop UAG Stop	UGU UGC UGA Stop UGG Trp	UCAG	
etter	c	CUU CUC CUA CUG	CCU CCC CCA CCG	CAU CAC CAA CAA CAG Gln	CGU CGC CGA CGG	U C A G	Third
First	A	AUU AUC AUA AUG Met	ACU ACC ACA ACG	AAU AAC AAA AAA AAG	AGU AGC AGA AGA AGG Arg	U C A G	letter

Question 4
Complete
Not graded

The amino acid sequence of Protein X begins Met-Gln-Leu. Which strand is the template strand for the Protein X gene?

- \bigcirc a. The top strand shown in the diagram
- b. The bottom strand shown in the diagram

Question 5		
Complete		
Not graded		

What is the second to last amino acid in S Protein?

🔵 а.	lle
🔘 b.	Thr
• c.	Tyr
🔘 d.	Met
○ e.	None of these

Question 6	
Complete	
Not graded	

T/F: When transcribing Gene X, RNA polymerase will read the DNA sequence from the right side of your computer screen to the left side of your computer screen.

Select one:

🔵 a. True

💿 b. False

Question 7	
Complete	
Not graded	

The S Protein gene and Gene X most likely have different promoter regions on your DNA sequence.

Select one:

💿 a. True

🔵 b. False

Question 8
Complete
Not graded
RNA polymerase will read the sequence for the S Protein gene from the 3' end to the 5' end of the template strand.
Select one:
💿 a. True
🔘 b. False
Question 9
Complete
Not graded
The primary structure of the proteine expressed from each of these gapes will be different
The primary structure of the proteins expressed from each of these genes will be different.
Select one:
 a. True
O b. False
Question 10
Complete
Not graded
The tertiary structure of S Protein and the protein expressed from Gene X will most likely be the same.
Select one:
🔾 a. True
 b. False
Question T

Complete

How many total amino acids would you find in S Protein?

Select one:

🔵 a. 1,253

- 💿 b. 1,255
- 🔘 c. 1,254

🔘 d. 3,765

🔘 e. 3,768

- f. A different number not shown above
- O g. Not possible to say without more information

Question 12
Complete
Not graded

Which of the following changes to a codon would you expect to be LEAST damaging to the resulting protein (all codons are written 5'->3')?

Select one:

• a. GCC -> CUG

🔘 b. GAG -> AAG

🔘 c. AGC -> AGA

🔘 d. CAA -> GAA

Information

You suspect that regulation of the transcription of the SARS-CoV-2 S Protein gene might play an important role in infection. To identify important regulatory elements for this gene, you isolate a piece of DNA that includes the sequence before the transcribed region of the gene. You first take the wild-type sequence, allow transcription to occur, and run a Northern blot to determine how much RNA is produced. You then change the first nucleotide in this region (labeled -24 to indicate that it is 24 nucleotides upstream from the transcription start site) to a different nucleotide and measure how much RNA is produced. You then change the second nucleotide (-23) and measure how much RNA is produced. You then change the third nucleotide (-22), and so on. The results from your experiment are shown below. Using these data, mark each of the following statements true or false.

Question 13	
Complete	
Not graded	

T/F: The nucleotide at position -22 could be part of a promoter sequence.

Select one:

💿 a. True

🔘 b. False

Question 14
Complete
Not graded
Nucleotides -21 and -20 do not appear to play a role in transcription.
Select one:
💿 a. True
O b. False
Question 15
Complete
Not graded
Nucleotides -14 and -13 could be a transcription factor binding site.
Select one:
💿 a. True
🔘 b. False
Question 16
Complete
Not graded
When nucleotide -19 is mutated, transcription of this gene increases.
Select one:
💿 a. True
O b. False

The image below depicts the structure of the SARS-CoV-2 S Protein. S Protein is made up of three identical polypeptide chains, or subunits, that associate with each other and form a spike-like structure on the surface of SARS-CoV-2. The left side of this image shows the structure of a single subunit (top) and the assembled S Protein spike structure (bottom). The right side of this image is a different model of the same S Protein structure that shows more detail of the protein structure. The arrow on the right side of the image points to a specific part of this structure, and a zoomed in view of that part of the structure is shown to the right of the arrow in a dotted box. Use this information to answer the following questions.

One subunit

Three subunits

Question	17
----------	----

Complete

Not graded

What is the highest level of protein structure in S Protein?

Select one:

🔘 a. Primary

🔘 b. Secondary

🔘 c. Tertiary

💿 d. Quaternary

Question 18
Complete
Not graded
T/F: If heat were added to S Protein, the primary structure would be the first level of structure to be disrupted.
Select one:
🔿 a. True
• b. False
Question 19
Complete
Not graded
T/F: Addition of one nucleotide in the open reading frame of the S Protein gene would probably not affect the function of S Protein.
Select one:
🔘 a. True
● b. False
Question 20
Complete
Not graded
What level of protein structure is shown in the boxed zoomed in region?
🔘 a. Primary
 b. Secondary

- 🔘 c. Tertiary
- 🔘 d. Quaternary

Question **21**

Complete

Not graded

T/F: Disrupting the tertiary structure of S Protein would most likely affect its primary structure.

Select one:

🔵 True

💿 False

Angiotensin Converting Enzyme 2 (ACE2) is a membrane protein on the surface of human cells in the lungs, arteries, and heart. To infect human cells, SARS-CoV-2 uses its S Protein to bind to ACE2 on cell surfaces in the lungs. The first part of the sequence of the primary RNA transcript encoding ACE2 is shown below (the full sequence is actually much longer, encoding a total of 805 amino acids, and extends beyond your computer screen, as indicated by the three dots to the right of the sequence). A diagram above the sequence highlights certain features of this primary RNA transcript. Exons are depicted as white boxes, and introns are indicated by lines. The numbered regions represent areas of this gene where mutations will be made. Each of the questions below describes a different mutation that could occur in the ACE2 gene. Below the sequence are five possible gel pairs showing the potential consequences of different mutations in the ACE2 gene. The gel pairs each contain an RNA gel showing the mature mRNA product and a protein gel showing the protein produced from that mRNA. On each gel, "WT" is the normal wild type version of ACE2 and MUT is the mutated version. Assume any difference in size of a molecule (even one nucleotide!) from WT is detectable on a gel. Use the gel pairs as answer choices to describe the result you would be most likely to observe as a consequence of each mutation. Answer choices may be used more than once or not at all.

Gel pair that could result from the addition of AAUAC at point 1.

- 🔵 a. 🛛 Gel Pair A
- 💿 b. Gel Pair B
- 🔘 c. Gel Pair C
- 🔵 d. Gel Pair D
- 🔵 e. Gel Pair E
- f. None of these

Question 23
Complete
Not graded

Gels that could result from the deletion of the region indicated at point 2.

Select one:

- 🔵 a. Gel Pair A
- 🔘 b. Gel Pair B
- 💿 c. Gel Pair C
- 🔘 d. Gel Pair D
- 🔘 e. Gel Pair E
- f. None of these

Question 24					
--------------------	--	--	--	--	--

Complete

Not graded

Gel pair that could result from inserting AAUUGU at point 3

Select one:

- 💿 a. Gel Pair A
- 🔵 b. Gel Pair B
- 🔘 c. Gel Pair C
- 🔘 d. Gel Pair D
- 🔘 e. Gel Pair E
- f. None of these

Question 25	
Complete	
Not graded	

Gel pair that could result from changing the U at point 4 to an A.

- 💿 a. Gel Pair A
- 🔵 b. Gel Pair B
- 🔵 c. Gel Pair C
- 🔘 d. Gel Pair D
- 🔵 e. Gel Pair E
- f. None of these

Question	26		
Complete			
Not grade	ed		

Gel pair that could result from a mutation making the spliceosome nonfunctional.

- 🔘 a. Gel Pair A
- 🔘 b. Gel Pair B
- 🔘 c. Gel Pair C
- 💿 d. Gel Pair D
- 🔘 e. Gel Pair E
- O f. None of these

Platelet-derived growth factor (PDGF) is a small molecule signal that binds to the surface of cells and subsequently promotes cell growth and division. To respond to the PDGF signal, cells must express a PDGF receptor on their cell surface in a specific orientation. The diagram below shows the process of protein trafficking in the endomembrane system. The PDGF receptor is shown on the cell surface, with its receptor domain facing outward and its signaling domain facing inward. Use this information to answer the following questions.

Question 27

Complete

Not graded

T/F: A ribosome initially became bound to the mRNA encoding PDGF Receptor on the rough endoplasmic reticulum.

Select one:

a. Trueb. False

Question 28	
Complete	
Not graded	

You are testing out a new drug in the laboratory, and add the drug to some cells expressing PDGF. Your drug supposedly prevents SRP from binding to signal peptides. Where would you expect to find PDGF in the cell if your drug treatment is successful?

- 💿 a. In the cytosol
- O b. In the nucleus
- c. In the rough ER
- Od. In vesicles
- 🔘 e. In the golgi

Question 29	
Complete	
Not graded	

Which of the following images correctly depicts the configuration of the PDGF Receptor protein in relation to the endoplasmic reticulum following translation?

Select one:

Image A

🔘 Image B

Image C

None of these

Question 30
Complete
Not graded

You are working on producing a vaccine by expressing the SARS-CoV-2 S Protein in a plant cell. However, you are becoming frustrated because your experiments aren't working. Your lab mate tells you that your experiments aren't working because the plant cells that you are working with have a mutation that prevents them from forming any vesicles. Where would you expect to find accumulation of S Protein in these plant cells?

Select one:

- a. In the cytosol
- b. In the endoplasmic reticulum
- 🔘 c. In vesicles
- 🔘 d. In the golgi

Information

The following image depicts the electron transport chain and oxidative phosphorylation in a eukaryotic cell. Use this diagram to help you answer the following questions.

Question 31
Complete
Not graded
FMN _{ox} is an example of an oxidizing agent.
Select one:
💿 a. True
🔘 b. False
Question 32
Complete
Not graded
At the same time the total amount of ATP increases in a cell, the total amount of ADP in the cell will increase.
Select one:
🔘 a. True
💿 b. False
Question 33
Complete
Not graded
Adding a drug that decreases the pH in the intermembrane space of the mitochondrion will cause ATP production to decrease.
Select one:
🔿 a. True
● b. False

Many plants rely on the release of odors into the environment to attract pollinators. To aid in the spread of these odors, these plants often engage in a process called thermogenesis, where they produce heat in the flower (see the image below for one example).

Plants that engage in thermogenesis do so by "decoupling" electron transport from ATP synthesis. Under certain conditions, they produce a protein called alternative oxidase (AOX) that has a redox potential of +90 and acts as an alternate electron acceptor during electron transport. This prevents the normal movement of electrons through the electron transport chain, so fewer H+ ions are pumped and less ATP is made. The end result is that these plants speed up their metabolism by an enormous amount to make up for the lowered ATP production, producing a great deal of heat in the process.

Use this information to answer the following questions.

Question 34	
Complete	
Not graded	

You determine that the redox potential of AOX is +90. Which molecule in the electron transport chain could AOX be accepting electrons from?

Select one:

- 💿 a. FeS1
- 🔵 b. FeS2
- 🔵 c. Cyta
- 🔵 d. Cyt a1

e. More than one of these

Question 35

Complete

If a plant cell begins producing AOX, the amount of Cyt c_{red} will _____ compared to before AOX was present.

- 🔘 a. Increase
- 💿 b. Decrease
- 🔘 c. Stay the same

The figures below show the light harvesting reactions of photosynthesis and the Calvin Cycle. Beneath the figures is a partial diagram of the redox reactions involved in the light harvesting reactions of photosynthesis, going from photosystem II to photosystem I. Note that photosystem II is made up of multiple smaller components indicated on the redox reaction diagram.

3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) is a chemical used in the laboratory to block the binding of QB to QA in Photosystem II (PSII). Use this information to answer the following questions.

Question 36
Complete
Not graded

T/F: When a plant is treated with DCMU, NADP+ accumulates in its reduced form.

Select one:

🔵 a. True

💿 b. False

Question 37
Not graded
T/F: When a plant is treated with DCMU, Pc accumulates in its oxidized form.
Select one:
 a. True b. False
Question 38 Complete
Not graded
T/F: When a plant is treated with DCMU, light energy will no longer be absorbed by chlorophyll molecules in photosystem I.
Select one:
🔿 a. True
⊙ b. False
Question 39
Complete
T/F: More oxygen will be produced by the plant when treated with DCMU.
Coloct one
O a. True
⊙ b. False
Question 40
Complete

T/F: When a plant is treated with DCMU, 3-phosphoglycerate will accumulate in the chloroplast.

Select one:

💿 a. True

🔵 b. False

Question 41
Complete
Not graded
T/F: Treating a plant with DCMU will cause the plant's mass to decrease over time.
💿 a. True
🔘 b. False
Question 42
Complete

Not graded

Adding a particular drug changes the redox potential of P700 from +420 to +310. Which of the following would you expect to observe in plant cells treated with this drug?

- a. Phe would accumulate in its reduced form.
- b. ATP would continue to be produced.
- c. Pc would accumulate in its oxidized form.
- d. Levels of 3-phosphoglycerate would decrease.
- e. More than one of the above

Question **43**

Complete

Not graded

Prometryn is an herbicide that acts as a photosystem II inhibitor (it prevents photosystem II from splitting water). If a plant were treated with prometryn, which of the following effects would you NOT expect to observe?

- a. Pc would accumulate in its oxidized form
- b. NADPH would accumulate in the chloroplast
- c. ATP production would decrease in the chloroplast
- O d. 3-phosphoglycerate would accumulate in the chloroplast
- e. G3P production would decrease

The figure below represents a ribosome in the process of translating an mRNA molecule (only part of the mRNA molecule is shown - the mRNA can be assumed to extend to the right and left of your screen). What will happen as the ribosome continues to translate the mRNA molecule shown in the diagram? You may find the codon chart below useful.

Second letter							
		U	С	Α	G		
	U	UUU UUC UUA UUG	UCU UCC UCA UCG	UAU UAC UAA Stop UAG Stop	UGU UGC UGA Stop UGG Trp	UCAG	
etter	c	CUU CUC CUA CUG	CCU CCC CCA CCG	CAU CAC CAA CAA CAG Gln	CGU CGC CGA CGG	UCAG	Third
First lo	A	AUU AUC AUA AUG Met	ACU ACC ACA ACG	AAU AAC AAA AAA AAG	AGU AGC AGA AGG Arg	UCAG	letter
	G	GUU GUC GUA GUA	GCU GCC GCA Ala	GAU GAC GAA GAA GAG GIu	GGU GGC GGA GGG	UCAG	

		GUGJ	GCG	GAGJ	GGG	G
Questior	44					
Complet	е					
Not grad	ed					

The growing polypeptide chain will be transferred to the tRNA in the E site of the ribosome.

Select one:

🔵 a. True

💿 b. False

Question 45 Complete
Not graded
The tRNA that is shown in the diagram with the anticodon 3'-CUC-5' will move to the A site of the ribosome.
Select one:
O a. True
• b. False
Question 46
Complete
Not graded
The same aminoacyl tRNA synthetase can charge the tRNA molecule with the anticodon 3'-UGG-5' and the tRNA molecule with the anticodon 3'-CUC-5'.
Select one:
🔘 a. True
⊙ b. False
Question 47
Complete
Not graded
The amino acid encoded by the codon 5'-CCG-3' will be covalently bonded to the tRNA currently shown in the P site.
Select one:

🔵 a. True

💿 b. False

Compl	lete
-------	------

Not graded

The next amino acid added to the polypeptide will form a peptide bond with the Met amino acid.

Select one:

🔵 a. True

💿 b. False

Question 49		
Complete		
Not graded		

Refer to the diagram of translation above. What is the anticodon of the tRNA that brought leucine into the growing polypeptide chain?

Select one:

- 💿 a. 3'-GAU-5'
- b. 3'-GUA-5'
- 🔘 c. 3'-AUC-5'
- 🔘 d. 3'-CAU-5'
- e. None of the above

ດມ	estion	5	0
Qu	estion	$\mathbf{\nabla}$	$\mathbf{\nabla}$

Complete

Not graded

What amino acid will be attached to a tRNA with the anticodon sequence 3'-GUA-5'?

Select one:

- 🔘 a. Arginine (Arg)
- 🔘 b. Threonine (Thr)
- c. Methionine (Met)
- Od. Serine (Ser)
- e. None of the above

Question 51	
Complete	
Not graded	

Which of the following describes where the ribosome began translating this mRNA molecule?

🔘 a. At the promoter

·

- b. At the +1 transcription start site
- 🔘 c. At the 5' cap
- d. At the AUG nearest to the 5' cap
- e. At the beginning of exon 1

Question 52
Complete
Not graded

You are studying a eukaryotic gene (Gene Z) and want to know how many introns and exons it has. To do this, you hybridize denatured Gene Z DNA with mature Gene Z mRNA. (You may assume that Gene Z only has one possible mature mRNA product.) You look in the microscope and see this result:

What can you conclude from this result?

- 🔘 a. Gene Z has seven exons
- b. Gene Z has seven introns
- C. Both of the above are true
- O d. Neither of the above are true

Information

[Questions 54-57] Each of the questions below describes a different mutation that could occur in a eukaryotic gene. Each gel pair contains an RNA gel showing the mature mRNA product of a eukaryotic gene and a Protein gel showing the protein product of the same gene. On each gel, "WT" is the normal wild type version and "MUT" is the mutated version. Use the answer choices [A, B, C, D, or E] to determine which pair of gels you would be most likely to observe as a consequence of each mutation. Answer choices may be used more than once or not at all.

Question 53		
Complete		
Not graded		

A mutation that causes the polyA tail to be half the length of the WT polyA tail.

Select one:

- 💿 a. Gel pair A
- 🔘 b. Gel pair B
- 🔘 c. Gel pair C
- 🔘 d. Gel pair D
- 🔵 e. Gel pair E

Question 54	
Complete	
Not graded	

A missense mutation in an exon of this gene that changes the codon for serine to the codon for threonine.

Select one:

- 🔵 a. Gel pair A
- 🔘 b. Gel pair B
- 🔘 c. Gel pair C
- 🔘 d. Gel pair D
- 💿 e. Gel pair E

Question 55	
Complete	
Not graded	

A mutation that adds 50 nucleotides to the 5' untranslated region (UTR) of this gene (assume that these nucleotides do not contain a start codon).

- 🔵 a. Gel pair A
- 💿 b. Gel pair B
- 🔘 c. Gel pair C
- 🔵 d. Gel pair D
- 🔵 e. Gel pair E

Question 56		
Complete		
Not graded		

Select one:

🔘 a. Gel pair A

A mutation changing the stop codon into the codon for methionine.

- 🔘 b. Gel pair B
- c. Gel pair C
- 🔵 d. Gel pair D
- 🔘 e. Gel pair E

Information

As we discussed in class, transcription factors often bind to specific nucleotide sequences by recognizing features of base pairs that are accessible via the major or minor groove of DNA. Specifically, transcription factors often look for specific combinations of hydrogen bond acceptors (partially negative O or N), hydrogen bond donors (partially positive H), and uncharged hydrogen atoms or methyl groups. The images below show what various base pairs would look like to a transcription factor if it were to approach the DNA from the major or minor

Consider two promoter sequences to answer the following questions (note that for each promoter, only the top strand is shown, but you can assume that these represent double stranded DNA sequences):

Promoter 1: 5' - TAATAA - 3'

Promoter 2: 5' – AAATTT – 3'

Question 57
Complete
Not graded
T/F: A transcription factor that binds in the major groove could distinguish between these promoter sequences.
Select one:
• True
○ False
Question 58
Complete
Not graded
T/F: A transcription factor that binds in the minor groove could distinguish between these promoter sequences.
Select one:

True

💿 False

Information

Consider the graph below, which shows the melting temperature of different organism's genomes as a function of nucleotide composition. Use this graph to answer the questions below.

Question 59
Complete
Not graded
The organisms <i>Mycobacterium phlei</i> and <i>E. coli</i> both have genomes with approximately 5 million base pairs. The number of hydrogen bonds between base pairs in the <i>Mycobacterium phlei</i> genome is in the <i>E. coli</i> genome.
 Greater than

c. The same as

Question 60

Complete

Not graded

The percentage of adenine in the *E. coli* genome is _____ in the yeast genome.

🔘 a. Greater than

O b. Fewer than

- 💿 b. Less than
- 🔘 c. The same as

◄ LS 7A Fall 2021 Midterm 2 ...

Jump to...

\$

LS 7A Answer Change ... ►