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(10 points) A protein called NF-xB is a major factor in inflammatory re-
sponses in humans. It normally is found in the cytoplasm of your cells,
bound to another protein called IxkBa. When the cell receives an inflam-
matory signal, IskBa is degraded. This reveals a special spot on NF-xB
that allows it to be imported into the nucleus. Once in the nucleus, NF-
kB acts as a “transcription factor” and turns on genes involved in the
inflammatory response.

We want to make a dynamical model of this process. We will use the
following variables:

I = amount of free IkBa

C = amount of free NF-xB in the cytoplasm
N = amount of free NF-«kB in the nucleus

B = amount of NF-xB bound to IxkBa

Here are the assumptions of the model:

o Free IskBa molecules (I) are produced at a constant rate g.
o Free IxkBa degrades at a per-molecule rate d.

o Free IxkBa molecules (I) can bind with free NF-xB in the cytoplasm (C). This
protein interaction only occurs when free IkBa collides with free NF-xB in the
cytoplasm, which happens with a rate constant of k. This collision turns the two
original molecules into one molecule of the IkBa/NF-xB complex (B).

o While bound to NF-xB, the IxBo can degrade, meaning that the complex (B)
degrades back into a free NF-xB molecule (C), and the IxBa is lost. This happens
at a per-molecule rate of u.

o Free NF-xB molecules (C) are produced in the cytoplasm at a constant rate p.
o Free NF-xB in the cytoplasm degrades at a per-molecule rate c.

o Free NF-xB is imported from the cytoplasm into the nucleus (C — N) at a
per-molecule rate of 7.

o NF-xB in the nucleus (V) is not produced directly, nor does it degrade. However,
it is exported back out to the cytoplasm (N — C) at a per-molecule rate of e.

Write a set of differential equations for this model. It is recommended
that you start with a diagram.
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Question 1 continued. ..




2. (a) (4 points) State the Fundamental Existence and Uniqueness Theo-
rem for differential equations (a.k.a. FTEUSODE, or the Picard-Lindelof
Theorle!m). ' _
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o (b) (3 points) Define what it means for a dynamical system to be de-
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mﬂ% sHale / system of differential equations. Suppose another trajectory starts at

the state (—2,4). Could this other trajectory pass through the origin,
(0,0)? Why or why not?
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3. (10 points) Red-tailed hawks prey on squirrels on the campus of UCLA.
The following differential equations model the local populations of the
hawks (H) and squirrels (S5):

H =0.1SH — 05H
S'=0.15 -

10+S

Suppose that initially, at time ¢t = 0, there are 3 hawks and 20 squirrels.
Using a step size of At = 0.1, find the (approximate) population sizes at
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4. You are managing a large hamster colony. You started your colony with
10 hamsters. The size of the population, H(t), is given by:

200¢?

H(t) = 19 + et

Here the time variable ¢ is in months.

(a) (5 points) Calculate the average rate of increase of the population
from t = 4 to t = 6 months. Do the same thing for the average growth
of the population from ¢ = 4 to t = 5 months. Calculate this also for
t =4 tot = 4.5 months.

Fm/\/\ L]L 19 ét M = / 00’ %7{/

6 =

= [2 |37 Mmffefﬁ@

From 4 0 5 w = Jiz’%:’//ﬁﬂ '
5 4 A

=231 7 honstes /v.m

FFOM T w1 H(Llf) H ) HM
| t5-4 %5 T —

;[»33/ 55_ %m\é’f@ﬁ/wﬂn%

Question 4 continues on the next page. ..



Question 4 continued. .. UID:

(b) (4 points) Compute the symbolic derivative H'(t). (Hint: Don’t for-
get the quotient rule!!) You don’t need to fully expand the denomi-
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(c) (3 points) Using your answer from (b), compute H'(4).
(Note: remember, this should be a number!).

Explain how this is related to the rates you calculated in part (a)
above.
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5. Most animals grow to a certain size and stop growing. Some animals,
like the great white shark, continue growing for their entire adult lives (at
least, for quite a long time). We can make a simple model for this never-
ending shark growth. Let’s say the age of the shark is ¢ years. Between
the ages of 5 and 80 years, we can model the length of the shark in meters

as:

L =1.711n(t)
Use a linear approximation to this function to answer the following ques-
tions:

(a) (2 points) What is the symbolic derivative of the length of the shark
with respect to its age. In other words, what is dL/dt?

(b) (4 points) What is the value of dL/dt evaluated at the age ¢ = 107
Using a linear approximation, predict how much a 10-year-old shark
will grow (e.g. AL) in the next half year.
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Question 5 continued. . . UID:

(c) (4 points) Use the same method as in (b) to predict how much a 50
year old shark will grow in half a year.

AL _ LA meters/
R /f:go 50 0/0 3(7,2 /

AL = 00342 at (e appovioatiog
G 8L~ 00312-(15) = |).012]  moters

e

(1A cm)

(d) (2 points) Compare your answers from (b) and (c). What is happen-
ing to the growth rate of the shark as it ages?
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6. It is important to know the density of wood for construction, manufac-
turing, etc. The density, D (measured in kg/m3), of wood in a tree, is
a function of the thickness of rings in a tree, R, measured in mm. The
thickness of the rings in a tree depends on the amount of water supplied
to the tree, W, measured in cm of rainfall in a given year. Say their
relationships are given by the following two equations:

D(R) = 100e~% + 300
RW)=vW +1

(a) (2 points) Say we are interested in measuring the density of wood as
a function of rainfall. How would you write this as a function? Your
answer should be in terms of W.

DR = 160e ™" + 200 <1002 + 300
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(b) (5 points) What is the derivative of D with respect to W? Your

answer should be in terms of W. nq\
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Question 6 continued. .. UID:

(c) (3 points) Say the derivative 42 = 0 at some value of W. What

would happen if you increase W a little bit at this point?

Lipgar agproximation  seys AD?\C OAW %
this caser fW e in D wedd be

awmx[mﬁd y 0. §ﬂ/ I lef mrj ;
the free 4%5/7‘1/ WMJ MM



7. (8 points) Say you have the following code:

def avgRateOfChange(f, x1, x2):
= f(x1)
= f(x2)
change_in_f = f2 - f1
change in x = x2 - x1
return change in f / change in x

Let f(z) = sin(z). You want to compute a list of closer and closer
approximations to f/(2), and print this list. On the following page,
there are seven lines of code. Specify a correct order for these lines, and
which ones need to be indented, to accomplish this.

Leave your answer in the box below:
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Note that you don’t have to write out the code, just the letters of the
lines. For example, you could answer something like the following:

A
B
C
D
E
F
G
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Question 7 continued. .. UID:

Lines Qf code:

A. x_list = [5, 4, 3, 2.5, 2.1, 2.01]
output_list = []

print (output_list)
output_list.append(this_avg rate)

£(x) = sin(x)

this_avg_rate = avgRateOfChange(f, 2, x2)

QE=EY O

for x2 in x_list:




