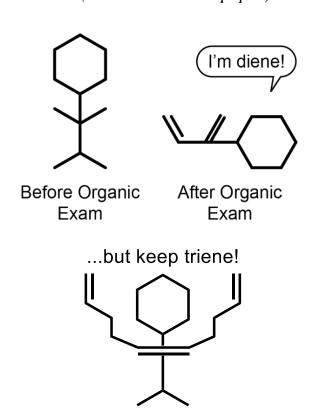
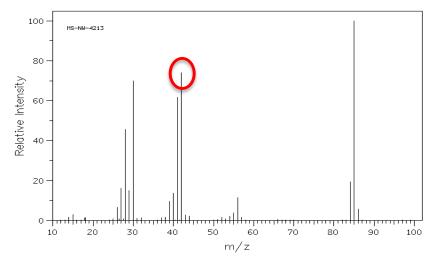


Organic Chemistry I Pham - Chem 14C University of California, Los Angeles Winter 2019 - Exam 2 – 02/28/19

I hereby state that I have neither given nor received aid to or from other students during this exam. I vouch for the honesty and integrity of each and every answer given.


Signature	KEY		'D#	
Name (printed)_				
Circle your TA:	Stephanie	Shuaijing	Sanghyun	Danlei
Circle your Lecti	ıre:	Lecture 1	Lecture 2	

Use the back side of each sheet as scratch paper.


See back pages for periodic table and correlation tables (aka more scratch paper).

	Possible	Your score
I. Mass Spec.	16	
II. IR Spec.	14	
III. NMR Spec.	19	
IV. Mixed Spec.	25	
V. Multiple Choice	27	
Bonus	0 (6)	
Total	100*	

^{*}Yes the total is 101. Think of it as an extra extra credit point. Good luck!

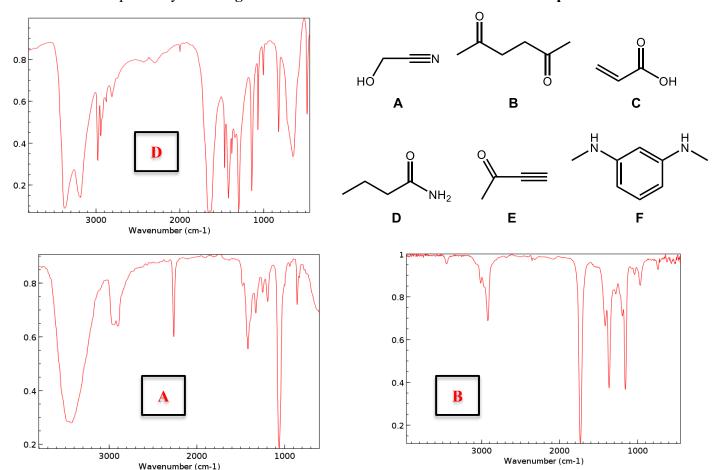
- **I. Mass Spectrometry** (16 pts) Answer the following questions about mass spectrometry.
 - a) (2 pts) Molecule A generates the mass spectrum below; the molecular ion peak is located at m/z = 85. Circle the peak corresponding to the most abundant fragment (i.e. not the parent peak).

Peak Data

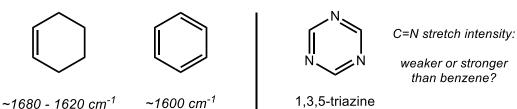
m/z = 85 Rel. Intensity: 100% m/z = 86 Rel. Intensity: 4.1%

b) (10 pts) Which of the following formulae are **possible** for Molecule A? If a structure/formula is not possible, **provide a quick explanation** why (*fewer than 8 words*).

Formula	Possible?	Brief Explanation (if "Not Possible")
C ₃ H ₁₉ NO	Yes No	Breaks 2n+2 rule
C ₃ H ₃ NCI	Yes No	M+2 shows no Br, Cl, S
C ₄ H ₉ N ₂	Yes No	Must have odd # of N
C ₄ H ₇ NO	Yes No	
C ₄ HN ₃	Yes No	Molecular weight =/= 85


c) (4 pts) If you were told that Molecule A **contains a fluorine atom but no oxygens**, what could be the molecular formula for Molecule A?

C₄H₄NF

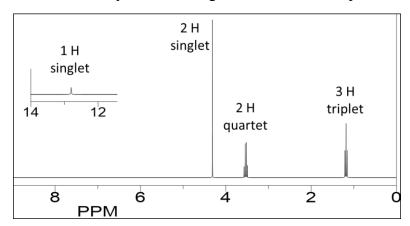

Molecular formula of A

Last Name

- II. Infrared Spectroscopy (14 pts) Answer the following questions about IR spectroscopy.
 - a) (6 pts) Of the following molecules, identify the **most likely structure** corresponding to these IR spectra by **inserting the letter** of the correct structure into the **boxes provided**.

b) (8 pts) As seen in your IR table, the C=C bond stretches for an alkene (like cyclohexene) show up around 1680-1620 cm⁻¹. However, C=C bond stretches in benzene occur at lower wavenumbers; **briefly explain why**. Also, do you expect the **C=N stretch** of 1,3,5-triazine to have a **weaker or stronger** intensity than the **C=C of benzene? Briefly explain**.

Explanations:


Wavenumber:

The benzene ring has conjugation, resulting in more partial-single-bond character (and thus a weaker bond), leading to a decrease in wavenumber

The C=N stretch will have a stronger (more intense) peak due to C=N being more polar than C=C

Last Name

III. Nuclear Magnetic Resonance Spectroscopy (19 pts) Molly Q. and Adam are debating over the structure of their product. They know that its molecular formula is C₄H₈O₃ and were able to determine the presence of a carboxylic acid, along with this ¹H-NMR spectrum:

a) (2 pts) What is the **Degrees of Unsaturation (DoU)** for the unknown compound?

1

b) (10 pts) Using the information in the NMR spectrum, draw the structure of Molly and Adam's unknown product in the box below. (You may use the white space for scratch work; only the molecule in the box will be graded.)

c) (2 pts) Besides the carboxylic acid, what **other functional group** is present in the molecule? (Don't put "alkane")

ether

d) (5 pts) Explain how you could distinguish between these two aromatic aldehydes using either ¹H-NMR or ¹³C-NMR (not both).

Explanation:

The first molecule would have 6 total C-NMR signals (4 aromatic) due to symmetry, while the second molecule will have 9.

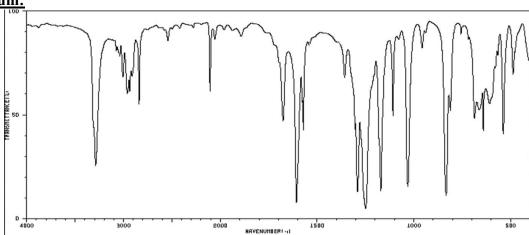
or

The first molecule would have one signal for all 6 H's on the methyls due to symmetry, while the second would have two different signals

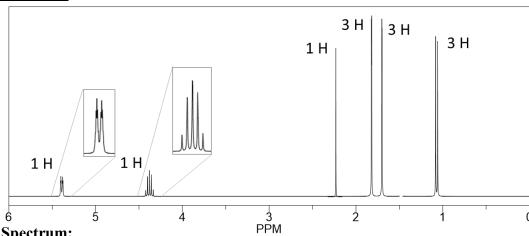
IV. Mixed Spectra Problem (25 pts) Using the following data and spectra, deduce the molecular structure and IHD of the unknown compound B. Draw your compound in the box provided at the end of the question. For the possibility of partial credit (in case your structure is incorrect), provide legible and relevant information you deduced in the box provided on the following page.

Mass spectrum: [M]: m/z = 124 Relative abundance: 100%

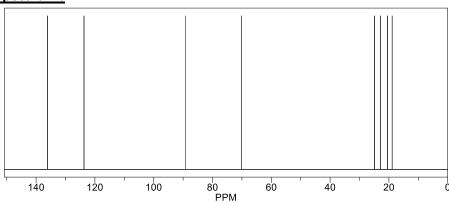
[M+1]: Relative abundance: 9.1% Relative abundance: 0.9%


$C_8H_{12}O$

Molecular formula of B


Index of Hydrogen Deficiency (IHD):

3

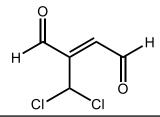


¹H-NMR Spectrum:

¹³C-NMR Spectrum:

Last Name	
Last manic	

Relevant Analysis for Mixed Spectra Problem (e.g. Formula, NMR Pieces, etc.)
Nelevant Analysis for wilked Spectra Frobletti (e.g. Formula, Nivir Fieces, etc.)


(25 pts) Clearly draw the structure of your molecule here:

Last Name	
Lastinatic	

V. Multiple Choice, For the Most Part (27 pts, 3 pts each) – For each question, choose the *best* answer and write the letter of your answer in the box(es) provided. For True or False questions, write T for True and F for False.

- C
- 1. Which of the following functional groups would exhibit the **highest frequency** in an IR spectrum?
 - a) ester
- b) alkyne
- c) alcohol
- d) ketone
- e) aldehyde
- 2. For the following molecule, how many different signals* are predicted in the...

*Write a number in the corresponding boxes

3. What is the **expected splitting pattern** for the signal of the indicated hydrogens? Assume equal coupling constants.

Ha: B

H_b: C

H_c:

a) singlet

d) quartet

b) doublet

e) more than quartet

c) triplet

- f) Impossible to tell
- 4. Relative to tetramethylsilane (TMS), which of these molecules contains hydrogens that will show up on an **NMR spectrum** with a **negative chemical shift**?
 - a) A
- b) B
- c) C
- H_3C CH_3 H_3C CH_3 H_3C CH_3 CH_3

5. Which of the following statements is **false**?

d) More than one of them

- a) [CH₃CH₂CH₂]⁺ is a fragment that can be detected by a mass spectrometer
- b) Chlorine (Cl₂) is an IR-active molecule
- c) Boron-10 (¹⁰B) contains an **NMR-active** nucleus

T

6. True or False: Two enantiomers will generate the same (or indistinguishably similar) mass and IR spectra.

Last Name		

BONUS (6 pts): **Answer** the next few questions for some extra credit points. These are *strictly extra points*, meaning that missing these will not be detrimental to your grade.

B1) (3 pts) C₆₀, shown below, is a molecule we briefly came across in an earlier Fun Friday.

series

Ac

Th

Pa

How many ¹**H-NMR** signals do you expect for C₆₀? __0_ How many ¹³**C-NMR** signals? 1

Explain your reasoning for both answers above:

There are no hydrogens in C_{60} , and all the carbons are equivalent

B2) (3 pts) The LAs have been an integral part of your development this quarter, so let's see if you remember who they are. For **0.5** pt each, name any 6 of the 12 Discussion LAs/UAs as you can (first names allowed).

LA 1: _	Ariana	LA 2:Michelle	_ LA 3:Natalie
LA 4:	Jennifer	LA 5: Jason	LA 6: Amanda

Also accepted: Christopher, Wesley, Adira, Arian, Matt, Tiffany, Yidan

1																	18
1 H 1.008	2											13	14	15	16	17	2 He 4.0026
3 Li 6.94	4 Be 9.0122											5 B 10.81	6 C 12.011	7 N 14.007	8 O 15.999	9 F 18.998	10 Ne 20.180
11 Na 22.990	12 Mg 24.305	3	4	5	6	7	8	9	10	11	12	13 Al 26.982	14 Si 28.085	15 P 30.974	16 S 32.06	17 CI 35.45	18 Ar 39.948
19 K 39.098	20 Ca 40,078	21 Se 44.956	22 Ti 47.867	23 V 50.942	24 Cr 51.996	25 Mn 54.938	26 Fe 55.845	27 Co 58.933	28 Ni 58,693	29 Cu 63.546	30 Zn 65.38	31 Ga 69.723	32 Ge 72.630	33 As 74.922	34 Se 78.97	35 Br 79.904	36 Kr 83.798
37 Rb 85.468	38 Sr 87.62	39 Y 88.906	40 Zr 91.224	41 Nb 92.906	42 Mo 95.95	43 Tc (98)	44 Ru 101.07	45 Rh 102.91	46 Pd 106.42	47 Ag 107.87	48 Cd 112.41	49 In 114.82	50 Sn 118.71	51 Sb 121.76	52 Te 127.60	53 I 126.90	54 Xe 131.29
55 Cs 132.91	56 Ba 137.33	57-71 *	72 Hf 178.49	73 Ta 180.95	74 W 183.84	75 Re 186.21	76 Os 190.23	77 Ir 192.22	78 Pt 195.08	79 Au 196.97	80 Hg 200.59	81 T1 204.38	82 Pb 207.2	83 Bi 208.98	84 Po (209)	85 At (210)	86 Rn (222)
87 Fr (223)	88 Ra (226)	89-103 #	104 Rf (265)	105 Db (268)	106 Sg (271)	107 Bh (270)	108 Hs (277)	109 Mt (276)	110 Ds (281)	111 Rg (280)	112 Cn (285)	113 Nh (286)	114 F1 (289)	115 Me (289)	116 Lv (293)	117 Ts (294)	118 Og (294)
	* Lanti seri		57 La 138.91	58 Ce 140.12	59 Pr 140.91	60 Nd 144.24	61 Pm (145)	62 Sm 150.36	63 Eu 151.96	64 Gd 157.25	65 Tb 158.93	66 Dy 162.50	67 Ho 164.93	68 Er 167.26	69 Tm 168.93	70 Yb 173.05	71 Lu 174.97
	# Actir	nide	89	90	91	92	93	94	95	96	97	98	99	100	101	102	103

Cm

Am

Cf

Md

No

Stretching Frequency
Zone 1: 3700-3200 cm⁻¹

Intensity and Shape

Zone 2: 3200-2700 cm⁻¹

3650-3200 cm⁻¹ 3340-3250 cm⁻¹ 3500-3200 cm⁻¹

usually strong and broad usually strong and sharp

medium; often broad

3100-3000 cm⁻¹ 2960-2850 cm⁻¹

		strong	50 cm ⁻¹ *	1690-1650 cm ⁻¹ *	Amide C=O	1
		strong	00 cm ⁻¹ *	1725-1700 cm ⁻¹ *	Carboxylic acid C=O	Carbo
		strong	20 cm ⁻¹ *	1740-1720 cm ⁻¹ *	Aldehyde C=O	Alı
		strong	35 cm ⁻¹ *	1750-1735 cm ⁻¹ *	Ester C=0	
		strong	05 cm ⁻¹ *	1750-1705 cm ⁻¹ *	Ketone C=O	_
Benzene C=C			0-1650 cm ⁻¹	Zone 4: 1850-1650 cm ⁻¹		
)	arp	variable and sharp	20 cm ⁻¹	2260-2220 cm ⁻¹	Nitrile C≡N	
Alkene C=C	arp	variable and sharp	00 cm ⁻¹	2260-2000 cm ⁻¹	Alkyne C≡C	1
			0-2000 cm ⁻¹	Zone 3: 2300-2000 cm ⁻¹		
Bond	nape	Intensity and Shape	Frequency	Stretching Frequency	Bond	
* attache					100.0 %	127
	49.31 %	⁸¹ Br			50.69 %	⁷⁹ Br
Carboxylic acid O-H	24.23 %	³⁷ Cl			75.77 %	³⁵ Cl
Aldehyde C-H	4.22 %	ţ,	0.76 %	Š	95.0 %	SS
Alkyl sp ³ C-H	2	2) 	3	100.0 %	3 -
Aryl* or vinyl** sp ² C-H	0.204 %	¹⁸ 0	0.037 %	170	99.759 %	iõ
			0.366 %	Ž	99.634 %	14 Z
Amine or amide N-H	ppm	Ĉ	1.107 %	ດື	98.893 %	¹² C
Alkyne ≡C-H	ppm	문	0.015 %	: 권	99.985 %	゙ヹ
Alcohol O-H	Natural abundance	Isotope	Natural abundance	Isotope	Natural abundance	Isotope
Bond	M + 2 contributors	M + 2 co	M + 1 contributors	M + 1 cc	M contributors	M con

* attached to
d to
benzene ring
_
o *
ıttached
ttached to
**attached to alkene
ittached to alkene
ittached to alkene

~2900, ~2700 cm⁻¹ 3000-2500 cm⁻¹

usually strong; very broad

medium; two peaks

variable variable

~16 Benzene C=C ~15I	Alkene C=C 168	Zone	Bond Stretch
~1600 cm ⁻¹ and ~1500-1450 cm ⁻¹	1680-1620 cm ⁻¹	Zone 5: 1680-1450 cm ⁻¹	Stretching Frequency
variable; 1600 cm ⁻¹ often two peaks	variable		Intensity and Shape

Tables of Average $^1\text{H-NMR}$ and $^{13}\text{C-NMR}$ Chemical shifts (δ , ppm)

RCH ₃	0.9	RC≡CH	2.5	benzene-H	6.5 – 8
RCH ₂ R acyclic	1.3	RNHCH ₃	2 - 3	aldehyde RCHO	9.5 – 11
RCH ₂ R cyclic	1.5	RCH2X (X = Cl, Br, I)	3.5	RNH_2	1 - 3
R_3CH	1.5 - 2.0	RCH ₂ NR ₂	2.3 - 2.7	benzene-NH ₂	3 - 5
NA CH3	1.8	ξ —осн₃	3.3 – 4.0	N YZ	5 – 9
CH3	2.0 – 2.6	ξOC H 2R	3.6 – 4.6	ROH	1 – 5
CH ₂ R	2.2 – 3.0	R ₂ C=C H ₂	5.0	benzene-OH	4-7
benzene-CH ₃	2.3	RCH=CR ₂	5.3	RCOO H	10 – 13
benzene-CH ₂ R	2.6				

RCH ₃	0 – 40	RCH ₂ Cl	35 – 80	benzene ring sp^2 C	110 – 160
RCH_2R	15 - 55	R ₃ COH	40 - 80	C=O ester	160 - 180
R_3 CH	20 - 60	R ₃ COR	40 - 80	C=O amide	165 - 180
RCH_2I	0 - 40	RC≡CR	65 - 85	C=O carboxylic acid	175 - 185
RCH ₂ Br	25 - 65	R_2 C = C R_2	100 - 150	C=O aldehyde, ketone	180 - 220