Organic Chemistry I Pham - Chem 14C University of California, Los Angeles Winter 2019 - Exam 1 - 02/07/19

I hereby state that I have neither given nor received aid to or from other students during this exam. I vouch for the honesty and integrity of each and every answer given.

Signature	_KEY	ID#
Name (printed)		

Circle your TA: Stephanie Shuaijing Sanghyun Danlei

Use the back side of each sheet as scratch paper. See back page for periodic table.

	Possible	Your score
I. This, That, or the Other	8	
II. Decisions, Decisions	26	
III. Two of a Kind	27	
IV. Azomatic?	22	
V. General Knowledge	18	
**Bonus	0 (4)	
Total	100*	

THINK LIKE A PROTON. ALWATS POSITIVE.

*The actual total is 101. Think of it as an extra extra credit point. Good luck!

I. This, That, or the Other (8 pts; 2 pts each) Answer the following questions by inputting the correct letter in the box provided next to each question.

a) What is the molecular formula of the following molecule?

E) None of the above

b) Which of the following statements is **incorrect**?

A) s-cis and s-trans are conformations of the same molecule

B) Resonance structures are representations of the same molecule

C) If the observed rotations (α) of two molecules are the same, they must be the same molecule

D) The mirror image of an achiral molecule should be the same molecule

c) How many conjugated p-orbitals does the following molecule have?

d) Which pair of representations (Newman and bond-line) accurately show the **anti conformation of butanal**?

B

B

II. Decisions, Decisions (26 pts) After performing an acid/base reaction in 14CL, you come across a dilemma – you have two possible structures (A and B) for the conjugate base product!

a) (6 pts) Assuming that the structure with **more conjugation** is likely your product, **circle the correct structure** below. Also indicate how many **conjugated p-orbitals** are present in each structure.

c) (13 pts) For molecule B below, draw three resonance structures. Minor contributors will be given fewer points. Of all 4 resonance structures, circle the most contributing resonance structure, and provide a brief reason why.

d) (4 pts) Provide curved arrows to show how to get to Resonance Structure 3 (whichever one that is).

Last Name _____

III. Two of a Kind (27 pts; 3 pts each) **Indicate the relationship** between the following pairs of compounds, using the following notation: constitutional isomers (CI), enantiomers (EN), diastereomers (DIA), unrelated (U), or the same molecule (S). **Write your answers inside the corner boxes** provided.

At least one of the 12 molecules in the above boxes is a **meso compound**. **Draw ONE** of those molecules in the box.

At least one of the 12 molecules in the above boxes is a **constitutional isomer** of the molecule below. **Draw ONE** of those molecules in the box. Also **indicate how many total stereoisomers** (including itself) molecule C can have.

IV. Azomatic? (22 pts) Answer the following questions pertaining to aromaticity, conjugation and color.

a) (12 pts; 3 pts each) Determine whether the following molecules are **aromatic** (A), **non-aromatic** (NA), or **anti-aromatic** (AA). Please provide your answer on the **line below each molecule**.

b) (10 pts) Azobenzene, shown below, is the main functional group for many commercial dyes; its color can be tweaked by adding different substituents on the rings. In its purest form, it **absorbs photons at ~472 nm**.

What color do you expect azobenzene to appear? A color wheel has been provided for you.

Color: ____orange____

The molecule below is a derivative of azobenzene. What color do you expect it to appear, and briefly explain why.

Color: <u>Red (or violet, etc.)</u>

Explanation:

It has more conjugation than azobenzene, leading to a longer wavelength of photon absorbed and likely reflecting red

Briefly **explain the lack of color** (a.k.a. colorless) of a solution of aniline, shown below; you may use either of the terms "infrared" or "ultraviolet" (or both) in your answer.

Explanation:

Aniline has less conjugation than azobenzene, so it likely absorbs photons in the ultraviolet region (<360nm), hence not in the visible spectrum

V. General Knowledge (18 pts, 3 pts each) Answer the next few questions about artemisinin, an antimalarial drug that earned its discoverer, Tu Youyou, the 2015 Nobel Prize in Medicine. Parts a-f refer to the image below:

- a) What is the name of this functional group? _____(carboxylic) ester_____
- **b)** What is the **hybridization** of this oxygen? __sp³__
- c) What is the molecular geometry of this oxygen? <u>tetrahedral/bent</u>
- d) What is the absolute configuration (R/S) of this center? __R__
- e) How many conjugated p-orbitals are in artemisinin? ____3___
- f) How many chiral centers does artemisinin have? ____7____
- ****Bonus:** Answer the next few questions for some extra credit points. These are *strictly extra points*, meaning that missing these will not be detrimental to your grade, and can only help you.

(2 pts) Cycloheptatriene, shown below, is very resistant to deprotonation (i.e. losing a proton). Briefly **explain why**.

(2 pts) If you have been coming to lecture, this guy should look familiar to you!

What word is written **above his head**? <u>Science!</u>

What **color is the shirt** that he's wearing? ____Blue___

						_			
		87 Fr (223)	55 Cs 132.91	37 Rb 85,468	19 K 39.098	11 Na 22.990	3 Li 6.94	н - н 800.1	
* Lanthanide series # Actinide series	88 Ra (226)	56 Ba 137.33	38 Sr 87.62	20 Ca 40.078	12 Mg 24.305	4 Be 9.0122	2		
	89-103 #	57-71 *	39 Y 88.906	21 Sc 44.956	3				
89 Ac (227)	57 La 138.91	104 Rf (265)	72 Hf 178.49	40 Zr 91.224	22 Ti 47.867	4			
90 Th 232.04	58 Ce 140.12	105 Db (268)	73 Ta 180.95	41 Nb 92,906	23 V 50.942	5			
91 Pa 231.04	59 Pr 140.91	106 Sg (271)	74 W 183.84	42 Mo 95.95	24 Cr 51.996	\$			
92 U 238.03	60 Nd 144.24	107 Bh (270)	75 Re 186.21	43 Tc (98)	25 Mn 54.938	7			
93 Np	61 Pm (145)	108 Hs (277)	76 Os 190.23	44 Ru 101.07	26 Fe 55.845	×			
(244) 244)	62 Sm 150.36	109 Mt (276)	77 Ir 192.22	45 Rh 102.91	27 Co 58.933	9			
243) (243)	63 Eu 151.96	110 Ds (281)	78 Pt 195.08	46 Pd 106,42	28 Ni 58.693	10			
(247) (247) (247)	64 Gd 157.25	111 Rg (280)	79 Au 196.97	47 Ag 107.87	29 Cu 63.546	=			
(247) (247)	65 Tb 158.93	112 Cn (285)	80 Hg 200.59	48 Cd 112.41	30 Zn 65.38	12		_	
5 2 8 2 8	66 Dy 162.50	113 Nh (286)	81 TJ 204.38	49 In 114.82	31 Ga 69.723	13 Al 26.982	5 B 10.81	13	
(252) (252)	67 Ho 164.93	114 F1 (289)	82 Pb 207.2	50 Sn 118.71	32 Ge 72.630	14 Si 28.085	6 C 12.011	14	
100 Fm	68 Er 167.26	115 Mc (289)	83 Bi 208.98	51 Sb 121.76	33 As 74.922	15 P 30.974	7 N 14.007	5	
101 Md (258)	69 Tm 168.93	116 Ly (293)	84 Po (209)	52 Te 127.60	34 Se 78.97	16 S 32.06	8 0 8 8	9	
(259)	70 Yb 173.05	117 Ts (294)	85 At (210)	53 I 126.90	35 Br 79.904	35.45 35.45	9 F 18.998	17	
(262) (262)	71 Lu 174.97	118 Og (294)	86 Rn (222)	54 Xe 131.29	36 Kr 83.798	18 Ar 39.948	10 Ne 20.180	18 2 He 4.0026	

Last Name _____