1.	A hydrocarbon has an M^+ peak of m/z 136. It also has two double bonds and one ring	g in its
	structure. What is the molecular formula?	(8 pts total)

	_			i	ī		
1	L	1	0	r	1	1	6

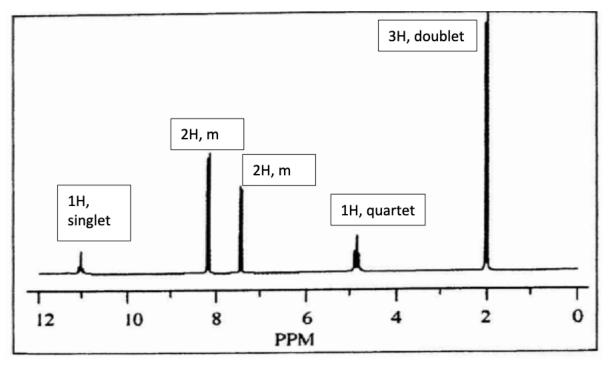
- -1 if not a hydrocarbon
- -2 if molar mass does not add up to 136
- -2 if C₁₁H₄ (exceeds 2n+2), C₉H₂₈, etc...
- -2 if molecular formula does not have 3 degrees of unsaturation
- 2. In as few words as possible, explain for the differences in observed IR absorptions in each of the following pairs of functional groups/molecules: (12 pts total)
 - a) an sp C-H stretch appears \sim 3300 cm⁻¹, while an sp² C-H stretch appears \sim 3100 cm⁻¹

the carbon of an *sp* C-H bond has more % s-character, which means it has a shorter bond length with H and therefore a stronger bond (6 pts)

student should mention either: % s-character and/or bond length/strength (graded leniently)

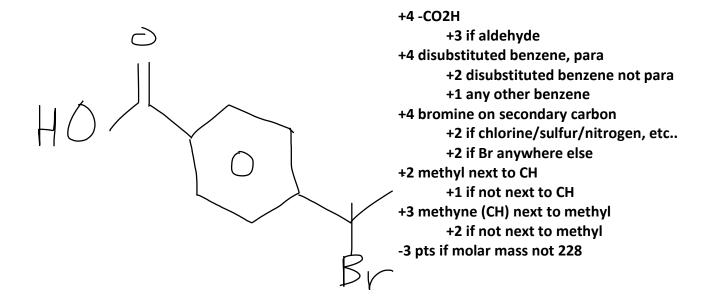
b) C -O stretches appear around 1400 cm⁻¹, while a C-Cl stretch appears around 700 cm⁻¹

O has a smaller atomic mass than Cl

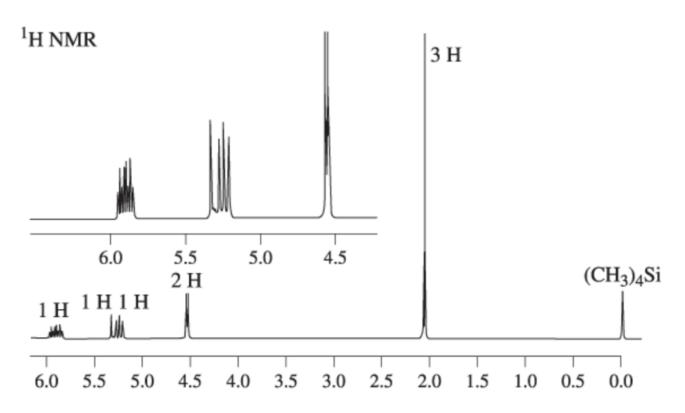

(6 pts)

(2/6 if student says O has a larger atomic mass)
(3/6 if student uses dipole or bond strength argument)
(0/6 any other reason)

3. A compound has the following data:

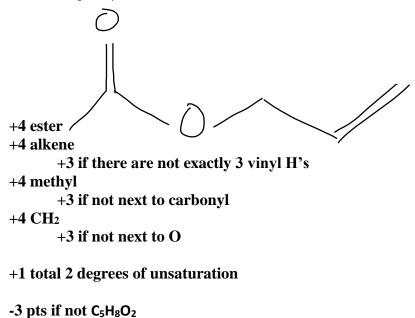

 M^+ peak at m/z 228, M + 2 peak at m/z 230 (~1:1 intensity) IR: 3400 – 2500 cm⁻¹ (intense, broad), 1710 cm⁻¹ (intense, sharp)

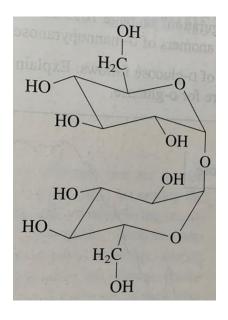
¹³C-NMR: there are seven signals

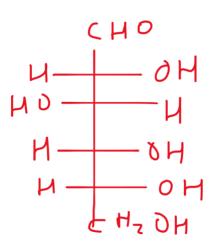


Deduce the structure. Use bond-line drawing as your final answer.

(17 pts total)


4. Deduce the structure of the compound with formula C₅H₈O₂ given the spectrum below.


The signal at 5.3 ppm is composed of two overlapping doublet of doublets.


Use bond-line drawing for your final answer.

(17 pts total)

- 5. Answer the following questions about the compound shown below, which is used by insects and some fungi to store energy: (13 pts total)
 - a) Consider only the top monosaccharide chair conformation. Draw the Fischer projection of the *D*-hexose from which this chair conformation is derived.

(10 pts, -1 pt each error)

Errors include: OH wrong side, incorrect number of carbons, ketose instead of aldose, etc...

***If not a D sugar, then -2 pts

b) The disaccharide shown is (CIRCLE ONE):

(3 pts, all or nothing)

reducing

non-reducing

cannot be determined