| Last Name:     | Bnn  |  |
|----------------|------|--|
| First Name:    | Jare |  |
| University ID: |      |  |

Midterm #1, Version C
Physics 1B
Prof. David Saltzberg
April 29, 2014

Time: 50 minutes

Closed Notes. Closed Book. Allowed one 3"x5" index card. Calculators are allowed. Show your work.

If a problem is confusing or ambiguous, notify the professor

Clarifications will be written on the blackboard. Check the board.

There are 1 pages including this cover sheet. Make sure you have them all. Extra workspace is given and extra paper is at the front of the room.

| Problem | Points | Problem | Points |
|---------|--------|---------|--------|
| 1       | /15    | 6       | /25    |
| 2       | /15    | EC      | /10    |
| 3       | /15    |         |        |
| 4       | /15    |         |        |
| 5       | /15    | TOTAL   | /100   |
|         |        |         |        |

1. (pts.) Write an equation describing a transverse sinusoidal wave on a string that has a wave speed (phase velocity) of 314 m/s, a frequency of 100 Hz, an amplitude of 10 meters and is traveling in the negative x direction, where at time t=0 the wave has a displacement of zero meters and is becoming positive.



$$\lambda = \frac{314m/s}{100 \, Hz} = 3.14m$$

$$K = \frac{2\pi}{\lambda} = 2m$$

$$\omega = 2\pi f = 2\pi (100)$$

$$= 628 \, \text{rad/s}$$

$$y(x,t) = 10 \sin \left(kx + ut\right)$$

$$y(x,t) = 10 \sin \left(2x + 628t\right)$$

3. ( pts.) Suppose the velocity, v, of an under-damped harmonic oscillator is given as a function of time, t, by:

$$v(t) = 7e^{-0.1t}\cos(4t + \frac{\pi}{2})$$

with all numbers in SI units. How long does it take for the total energy stored in the oscillator to drop to 1% of what its value was at 5 seconds?

Only need to look at the envelope 
$$E \propto y^2$$

$$\frac{1}{100} \left( \frac{1}{e^{-0.1(5)}} \right)^2 = \left( \frac{1}{e^{-0.1(5+t)}} \right)^2$$

$$\frac{1}{100} \left( \frac{1}{e^{-0.5}} \right)^2 = \left( \frac{1}{e^{-0.5}} \right)^$$

5. ( pts.) Using the convention in our class, an oscillating mass on a spring is described by the complex number z=-3i, where  $i=\sqrt{-1}$ . The oscillator is known to undergo a full cycle in 10 milliseconds as simple harmonic motion. Sketch the oscillation (displacement vs. time) from 0 to 10 milliseconds and label the amplitude.

$$x(t) = Re \left[ -3ie^{i\omega t} \right]$$

$$= Re \left[ -3i \left( \cos \omega t + i \sin \omega t \right) \right]$$

$$= 3 \sin(\omega t)$$



6. Two large tanks are open to atmospheric pressure,  $p_{atm}$ , and contain water as shown. A pipe passes from point B, past point C, and flows out into the air at point D. The pipe becomes narrower at point C where the cross-section (area) drops by a factor of 2. A tube opens into pipe at point C and dips into the liquid in the lower tank as shown. The depth of the water in the first tank is  $h_1$ . Its depth in the second tank is  $h_3$ . (For simplicity, the radius of the pipe is small compared to  $h_1$ ,  $h_2$  and  $h_3$ .)



The questions are on the next pages.

a) (10 pts) What is the speed of the water flow when it exits the tube at point D?

(A) Patm

(B) Patm + Pg (-h,) + 2P 45 2

Patm = Patm - Pgh, + 1 PVo2

Pgh, = 2/2/02 /Vo= Vagh, b) (15 pts) To what height h<sub>2</sub> does the water rise in the tube above the surface of the second tank? [Hints: 1) The upper and lower bodies of water are separate. 2) The pressure of the air of the tube connecting C to E is uniform.]

By continuity Ve = 2 Vo = 2 Jagh, (A)=(C) Patm = Pc + pg (-h,) + = P[2/29h] Pata = Pe - Pgh, + 4 Pgh. Petm = Pe + 3 Pgh, Pc = Patm - 3/gh, (F=E) (Fak y=0 at F) ) Pc + Pghz Patin = Patin - 3 Pgh, 3h. = h2  $h_2 = 3h_1$ 

Extra Credit (10 pts.) If an incident wave is only partially reflected from a boundary (such as sound from a soft wall) the resulting superposition of the two waves has an envelope that does not go completely to zero, as shown:



Therefore a very important quantity in engineering and physics is the "standing wave ratio" or SWR which is defined as SWR=A<sub>max</sub>/A<sub>min</sub>. Suppose the reflected wave is in phase and has 50% of the incident amplitude. Find the ratio of the envelopes between the places where a node and an antinode would have been if the reflection had been 100% and in phase.

use.

$$y(x,t) = A \cos(kx - \omega t) + \frac{1}{4} A \cos(kx + \omega t)$$

$$= A \left[ \cos(kx) \cos(\omega t) + \sin(kx) \sin(\omega t) + \frac{1}{4} \sin(kx) \sin(\omega t) \right]$$

$$= A \left[ \frac{3}{4} \cos(kx) \cos(\omega t) + \frac{1}{4} \sin(kx) \sin(\omega t) \right]$$

$$= A \left[ \frac{3}{4} \cos(kx) \cos(\omega t) + \frac{1}{4} \sin(kx) \sin(\omega t) \right]$$

$$= A \left[ \frac{3}{4} \cos(kx) \cos(\omega t) + \frac{1}{4} \sin(kx) \sin(\omega t) \right]$$

$$= A \left[ \frac{3}{4} \cos(kx) \cos(\omega t) + \frac{1}{4} \sin(kx) \sin(\omega t) \right]$$

$$= A \left[ \frac{3}{4} \cos(kx) \cos(\omega t) + \frac{1}{4} \sin(kx) \sin(\omega t) \right]$$

$$= A \left[ \frac{3}{4} \cos(kx) \cos(\omega t) + \frac{1}{4} \sin(kx) \sin(\omega t) \right]$$

$$= A \left[ \frac{3}{4} \cos(kx) \cos(\omega t) + \frac{1}{4} \sin(kx) \sin(\omega t) \right]$$

$$= A \left[ \frac{3}{4} \cos(kx) \cos(\omega t) + \frac{1}{4} \sin(kx) \sin(\omega t) \right]$$

$$= A \left[ \frac{3}{4} \cos(kx) \cos(\omega t) + \frac{1}{4} \sin(kx) \sin(\omega t) \right]$$

$$= A \left[ \frac{3}{4} \cos(kx) \cos(\omega t) + \frac{1}{4} \sin(kx) \sin(\omega t) \right]$$

$$= A \left[ \frac{3}{4} \cos(kx) \cos(\omega t) + \frac{1}{4} \sin(kx) \sin(\omega t) \right]$$

$$= A \left[ \frac{3}{4} \cos(kx) \cos(\omega t) + \frac{1}{4} \sin(kx) \sin(\omega t) \right]$$

$$= A \left[ \frac{3}{4} \cos(kx) \cos(\omega t) + \frac{1}{4} \sin(kx) \sin(\omega t) \right]$$

$$= A \left[ \frac{3}{4} \cos(kx) \cos(\omega t) + \frac{1}{4} \sin(kx) \cos(\omega t) \right]$$

$$= A \left[ \frac{3}{4} \cos(kx) \cos(\omega t) + \frac{1}{4} \sin(kx) \cos(\omega t) \right]$$

$$= A \left[ \frac{3}{4} \cos(kx) \cos(\omega t) + \frac{1}{4} \sin(kx) \cos(\omega t) \right]$$

$$= A \left[ \frac{3}{4} \cos(kx) \cos(\omega t) + \frac{1}{4} \sin(kx) \cos(\omega t) \right]$$

$$= A \left[ \frac{3}{4} \cos(kx) \cos(\omega t) + \frac{1}{4} \sin(kx) \cos(\omega t) \right]$$

$$= A \left[ \frac{3}{4} \cos(kx) \cos(\omega t) + \frac{1}{4} \sin(kx) \cos(\omega t) \right]$$

$$= A \left[ \frac{3}{4} \cos(kx) \cos(\omega t) + \frac{1}{4} \sin(kx) \cos(\omega t) \right]$$

$$= A \left[ \frac{3}{4} \cos(kx) \cos(\omega t) + \frac{1}{4} \sin(kx) \cos(\omega t) \right]$$

$$= A \left[ \frac{3}{4} \cos(kx) \cos(\omega t) + \frac{1}{4} \sin(kx) \cos(\omega t) \right]$$

$$= A \left[ \frac{3}{4} \cos(kx) \cos(\omega t) + \frac{1}{4} \sin(kx) \cos(\omega t) \right]$$

$$= A \left[ \frac{3}{4} \cos(kx) \cos(\omega t) + \frac{1}{4} \sin(kx) \cos(\omega t) \right]$$

$$= A \left[ \frac{3}{4} \cos(kx) \cos(\omega t) + \frac{1}{4} \sin(kx) \cos(\omega t) \right]$$

$$= A \left[ \frac{3}{4} \cos(kx) \cos(\omega t) + \frac{1}{4} \cos(kx) \cos(\omega t) \right]$$

$$= A \left[ \frac{3}{4} \cos(kx) \cos(\omega t) + \frac{1}{4} \cos(kx) \cos(\omega t) \right]$$

$$= A \left[ \frac{3}{4} \cos(kx) \cos(\omega t) + \frac{1}{4} \cos(kx) \cos(\omega t) \right]$$

$$= A \left[ \frac{3}{4} \cos(kx) \cos(\omega t) + \frac{1}{4} \cos(kx) \cos(\omega t) \right]$$

$$= A \left[ \frac{3}{4} \cos(kx) \cos(\omega t) + \frac{1}{4} \cos(kx) \cos(\omega t) \right]$$

$$= A \left[ \frac{3}{4} \cos(kx) \cos(\omega t) + \frac{1}{4} \cos(kx) \cos(\omega t) \right]$$

$$= A \left[ \frac{3}{4} \cos(kx) \cos(\omega t) + \frac{1}{4} \cos(kx) \cos(\omega t) \right]$$

$$= A \left[ \frac{3}{4} \cos(kx) \cos(\omega t) + \frac{1}{4} \cos(kx) \cos(\omega t) \right]$$

$$= A \left[ \frac{3}{4} \cos(kx) \cos(\omega t) + \frac{1}{4} \cos(kx) \cos(\omega t) \right]$$

$$= A \left[ \frac{3}{4} \cos(kx) \cos$$