| YOUR NAME: | SOLUTIONS | DISCUSSION SECTION: |
|------------|-----------|---------------------|
| YOUR ID:   |           |                     |

Please write your answer *clearly*.

Partial credits are given, so show as much work as possible. You may use diagrams where appropriate.

Make sure you have all 8 pages.

A calculator and one 3"x5" index card with notes is allowed.

| Problem       |   |
|---------------|---|
| #1 (8 pts)    |   |
| #2 (13 pts)   |   |
| #3 (6 pts)    |   |
| #4 (10 pts)   |   |
| #5 (5 pts)    |   |
| #6 (13 pts)   |   |
| Total: 55 pts | ž |

- 1. Two small, identical conducting spheres A and B are a distance R apart; each carries the same charge Q. [8 pts]
  - (a) What is the force sphere B exerts on sphere A? [2 pts]

(b) An identical sphere with zero charge, sphere C, makes contact with sphere B and is then moved very far away. What is the force sphere B now exerts on sphere A? [3 pts]

$$Q_B = \frac{1}{2Q}$$

$$F = \frac{1}{4\pi 60} \frac{Q^2}{2R^2} = \frac{1}{8\pi 60} \frac{Q^2}{R^2}$$

(c) Sphere C is brought back and now makes contact with sphere A and is then moved far away. What is the force sphere B exerts on sphere A in this third case? [3 pts]

$$Q_{A} = (Q + \frac{1}{2}Q) / 2 = \frac{3}{4}Q$$

$$F = \frac{1}{4\pi 60} \frac{Q^{2}}{R^{2}} (\frac{3}{4}) (\frac{1}{2})$$

$$F = \frac{1}{32\pi 60} \frac{Q^{2}}{R^{2}}$$

- 2. A very long solid nonconducting cylinder of radius  $R_1$  is uniformly charged with a charge density  $r_E$ . It is surrounded by a concentric cylindrical tube of inner radius  $R_2$  and outer radius  $R_3$  as shown in the figure, and it too carries a uniform charge density  $r_E$ . [13 pts]
- (a) What is the electric field for  $R_1 < r < R_2$  as a function of r? [4 pts]



$$E = \frac{\rho_E \pi R^2 l}{2\pi 6 r l} = \frac{\rho_E R^2}{26 r}$$

(b) What is the electric field for  $r < R_1$ ? [3 pts]

(c) Sketch the electric field as a function of the distance r from the center of the cylinders. Indicate clearly where  $r=R_1$ ,  $R_3$  and  $R_3$ . Also indicate what function of r the electric field is (for e.g.,  $E\sim 1/r$ , etc). [6 pts]



- 3. A conducting spherical shell has inner radius = 10.0cm, outer radius = 15.0cm, and has a  $+3.0\mu$ C point charge at the center. A charge of  $-3.0\mu$ C is put on the conductor. [6 pts]
  - (a) Where on the conductor does the -3.0  $\mu$ C end up? Explain. [2 pts]

(b) What is the electric field both inside and outside the shell? [4 pts]

Inside: 
$$E = \frac{1}{4\pi60} \frac{9}{r^2}$$

4. A parallel-plate capacitor of area A has a dielectric inside, with dielectric constant K1, except for one corner of it which has a different dielectric of dielectric constant K2 as shown below. Determine the capacitance as a function of K1, K2 and thicknesses  $l_1$  and  $l_2$ . [10 pts]

Left half: 
$$\frac{2}{C1} = \frac{1}{C_1} + \frac{1}{C_2}$$

$$= \frac{2 l_2}{k_1 6 \omega A} + \frac{2 l_1}{k_1 6 \omega A}$$

$$= \frac{2 l_2}{k_2 6 \omega A} + \frac{2 l_1}{k_1 6 \omega A}$$

$$C = \frac{6 \omega A}{2} + \frac{k_1 k_2}{l_1 k_2 + l_2 k_1}$$

$$C = \frac{6 \omega A}{2} + \frac{k_1 k_2}{l_1 k_2 + l_2 k_1}$$

$$C = \frac{6 \omega A}{2} + \frac{k_1 k_2}{l_1 k_2 + l_2 k_1}$$

5. A total charge Q is uniformly distributed on a thread of length l. The thread forms a semicircle. What is the potential at the center as a function of Q and l? Assume V = 0 at large distances. [5 pts]

$$r = 2/\pi$$

$$r = 2/\pi$$

$$V = \frac{1}{4\pi60} \int \frac{dg}{r} = \frac{1}{4\pi60} r \int dg$$

$$= \frac{Q}{4\pi60} = \frac{Q}{460l} = V$$

- 6. Two parallel-plate air-gap capacitors, each having a capacitance of  $2.00\mu F$ , are connected in parallel across a 12.0-V battery. The battery is disconnected from the parallel combination, and then a slab that has a dielectric constant K=2.50 is inserted between the plates of one of the capacitors, completely filling the gap. [13 pts]
- (a) Before the dieletric slab is inserted, find the charge on each capacitor. [4 pts]

$$Q_{i} = CV$$
=  $(Z_{MF})(12V)$ 
 $Q_{i} = 24_{MF}$ 

(b) After the dielectric is inserted, find the potential across each capacitor and the total energy stored in the capacitors. [9 pts]

Ceg = 
$$C_1 + KC_2 = (2\mu F) + (2.5)(2\mu F) = 7\mu F$$
.  

$$V = \frac{Q + tal}{Ceg} = \frac{48}{7} = 6.86 \text{ V}.$$

$$Q_1 = (2\mu F)(6.86) = 13.7 \mu \Theta.$$

$$Q_2 = (5\mu F)(6.86) = 34.3\mu C$$

$$U = U_1 + U_2 = \frac{1}{2}Q_1V + \frac{1}{2}Q_2V$$

$$= \frac{1}{2}(Q_1 + Q_2)V$$

$$= \frac{1}{2}(13.7 + 34.3)(6.86)$$

$$U = 165\mu T$$