

1. A non-conducting/insulating sphere of radius R is filled uniformly with charge of density ρ .

(a.) Find the electric field at points inside the sphere
$$(r \le R)$$
.

by symmetry $=$ is realial (2) direction

 $=$ (4 π r²) $=$ 4 π ke * Qend.

(b.) Find the electric field at points outside the sphere
$$(r > R)$$
.

Sy symmetry, \vec{E} is wallard (2)

 $\vec{E}(4\pi r^2) = 4\pi k_e \cdot Q_{hbal}$,

 $\vec{Q}_{hbal} = S^{4/3} \pi R^3$

(c.) Find the voltage difference between infinity and the center of the sphere, $V(r=0)-V(r\to\infty)$.

$$V_0 - V_{\infty} = -\int_{\infty}^{0} E dr$$

$$= -\int_{\infty}^{R} E_{2} dr - \int_{R}^{0} E_{1} dr$$

$$= k \frac{Q_{11} L_{1}}{R} + 2/3 \pi k_{e} R^{2}$$

$$= 2\pi k_{e} R^{2}$$

$$= 2\pi k_{e} R^{2}$$

2. Three point charges are positioned as shown in the Figure, with $q_1 = q_3 = -e$ and $q_2 = +2e$. The distance between adjacent charges is d. Ignore gravity.

(a.) Find the work done by an external agent to assemble the system.

 \bigcirc (b.) Find the electric potential at an arbitrary point on the y-axis.

(c.) Find the electric field at an arbitrary point on the \hat{y} -axis. Give all components,

$$E_x$$
, E_y , and E_z .

By symmetry,

 $E_x = E_z = 0$ be used to find

 $E_x = E_z = 0$ be used to find

 $E_x = E_z = 0$ be used to find

 $E_x = E_z = 0$ be used to find

 $E_x = E_z = 0$ be used to find

 $E_x = E_z = 0$ be used to find

 $E_x = E_z = 0$ be used to find

 $E_x = E_z = 0$ be used to find

 $E_x = E_z = 0$ be used to find

 $E_x = E_z = 0$ be used to find

 $E_x = E_z = 0$ be used to find

 $E_x = E_z = 0$ be used to find

 $E_x = E_z = 0$ be used to find

 $E_x = E_z = 0$ be used to find

 $E_x = E_z = 0$ be used to find

 $E_x = E_z = 0$ be used to find

 $E_x = E_z = 0$ be used to find

 $E_x = E_z = 0$ be used to find

 $E_x = E_z = 0$ be used to find

 $E_x = E_z = 0$ be used to find

 $E_x = E_z = 0$ be used to find

 $E_x = E_z = 0$ be used to find

3. Consider two infinite conducting plates. Plate A has a total surface charge -4σ and Plate B has total surface charge -2σ . The plates are parallel and initially isolated from each other.

(a.) Find the magnitude of electric field outside and between the plates.

EL = ER, Gauss's Law: -2EL = 44k. (-60) EL = 12xko/0

Gauss's Law:

-EL-E = 4thk(-40) = = 4thko

the surfaces of Plate A?

(b.) What are the charge densities, σ_1 and σ_2 , on the surfaces of Plate A?

⇒ 5= -30 6 5= -0 5 days

(c.) The plates are now connected to each other with a small conducting wire. Find the new charge densities on both surfaces of Plate A.

A+B are now excipotential.

7 52 = 0 0 En unchanged => 5, =-30