
Physics 1A - Winter 2016
Lecture 2

Final Exam
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Problem 1.

ω

ℓ

A submarine moves forward because it spins a propeller which displaces water backward.
The propeller is spun by a crankshaft that is connected to the submarine’s engine. The
propeller has N blades (for example in the diagram N = 8) of length `. Because of fluid
resistance, the water exerts an angular speed-dependent force f = cω2 on each blade, tangent
to the circle in which the blade is rotating. You can treat this force as though it’s acting at
the center of each blade. When the propeller spins, the resulting magnitude a of the ship’s
acceleration is related to the angular speed ω of the propeller as a = gNω/ω0 where ω0 is a
given constant.

If τ is the magnitude of the maximum torque the engine can exert on the crankshaft, and
if this torque gives the submarine a maximum acceleration of g/4, how many blades does its
propeller have?

Solution. Let the positive z-direction point out of the page, so the axis of rotation of the
propeller is along the z-axis. The propeller is a rigid body rotating around a fixed axis, so
we can apply the rotational analog of Newton’s Second Law to this scenario:

τnet,z = Iαz. (1)

Recall from the statement of the problem that the acceleration of the submarine increases
linearly with the angular velocity of the propeller. This means that if the submarine has
reached maximum acceleration, amax, then the propeller is spinning at some maximum an-
gular velocity ωmax, and these two are related as follows:

amax = gN
ωmax

ω0

(2)

We are told that the maximum acceleration of the sub is g/4, so this gives

g

4
= gN

ωmax

ω0

. (3)
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Moreover, when the submarine’s propeller reaches its maximum angular velocity, the angular
acceleration of the propeller will be zero, since otherwise the angular velocity would increase,
which it can’t. It follows that when the propeller reaches ωmax, the net torque τnet,z vanishes
(equals zero). On the other hand, the net torque consists of two pieces: the torque exerted
by the shaft on the propeller, and the torque exerted by the surrounding water slowing it
down. The net torque vanishing means that these must sum to zero:

τshaft,z + τwater,z = 0. (4)

Now suppose for concreteness that the propeller is spinning counterclockwise, then since
ωmax has been reached, and since the torque of the shaft on the propeller is causing this
counterclockwise rotation, it must point in the positive z-direction. This means

τshaft,z = τmax (5)

Moreover, the torque of the surrounding water will be the sum of all torques on each propeller,
each of which has magnitude fmax(`/2) since as told in the problem statement, we can treat
the force f of the water on the propeller as acting at its center. Noting also that this torque
will be opposite in direction to the torque exerted by the shaft, we find

τwater,z = −Nfmax
`

2
= −Ncω

2
max`

2
. (6)

Combining these torque results gives

τmax −
Ncω2`

2
= 0. (7)

Equations (3) and (7) form a system of two equations in the two unknowns N and ωmax.
Solving these equations for N gives

N =
cω2

0`

32τmax

(8)
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Problem 2.

b

mB

mA

M
R

k, ℓ
A

An Atwood’s machine with a pulley in the shape of a uniform disk of mass M and radius
R is in an elevator having vertical acceleration A relative to the ground. Let positive A
correspond to the elevator accelerating upward. Mass mA hangs on the left side of the pulley
while mass mB hangs on the right. The rope connecting masses mA and mB is massless.
The pulley is suspended from the ceiling of the elevator by a spring of spring constant k and
natural length `.

(a) Consider the special case mA = mB. What would you expect the length of the spring
to be in the following limits:

i. A→ 0

ii. A→ −g
iii. A→ g

Justify your answers using physical reasoning and minimal math if possible.

(b) When mA 6= mB but A = 0, would you expect the tension in the spring to be less
than, equal to, or greater than the weight of the pulley plus the weight of the masses
hanging from the pulley? Justify your answers using physical reasoning and minimal
math if possible.
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(c) Determine a general expression for the length of the spring in terms of the given
variables.

(d) Does your mathematical answer from part (c) agree with your answers from part (a)
in each special case? If so, demonstrate this mathematically for each case. If not, you
may want to re-evaluate your intuition, or your mathematical answer, or both.

(e) Does your mathematical answer from part (c) agree with your answer from part (b)? If
so, demonstrate this mathematically for each case. If not, you may want to re-evaluate
your intuition, or your mathematical answer, or both.

Solution.

(a) The length of the spring depends on the tension in the spring. When the tension or
compression in the spring is zero, the spring is at its natural length, but when the
tension its tension or compression is nonzero, the length of the spring is greater than
or less than the natural length respectively.

When mA = mB, neither mass will accelerate relative to the elevator, and for the
purposes of analyzing the tension or compression of the spring, we lose no generality
in considering the case that they are at rest relative to the elevator. In that case,
it’s simply as though there is a weight mA + mB + M hanging from the spring. For
simplicity, we use the notation mA = m and mB = m in this case that the masses are
equal.

i. When A → 0, the force on the spring is the same as if the elevator were just
at rest on the ground. Since we already remarked that when mA = mB, it’s as
though there is a weight 2m + M hanging from the spring, we would expect the
length L of the spring to obey k(L− `) = (2m+M)g and therefore the length of
the spring would be

L→ `+
2m+M

k
g (9)

ii. When A → −g, the elevator is in free fall. In this case, the spring feels no force
whatsoever, so we expect the length of the spring to be its natural length: L→ ` .

iii. When A → g, it feels on the inside the elevator as though gravity is twice as
strong. Therefore, the answer is the same as in part (i) except with g → 2g:

L→ `+
2m+M

k
(2g) (10)

(b) For the case mA 6= mB but A = 0, imagine the elevator sitting at rest at a certain
floor, then we have a standard Atwood’s machine with massive pulley. We can get
intuition for what happens in the case mA 6= mB, consider the extreme case mA → 0
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but mB > 0, then this reduces to the case of mB falling while wrapped around a
massive pulley. In this case, the tension in the spring equals the weight of the pulley
plus the tension in the rope holding mB, but the tension in the rope holding mB will
be less than the weight of mB because otherwise, mB wouldn’t fall down. Hence, the
tension in the spring is less than the sum of the weights of the objects hanging from
it.

(c) Once we find the force F in the spring, we can find its length. Drawing free body
diagrams for masses mA, mB, and the pulley in the y-direction gives the following
Newton’s Second Law equations:

TA −mAg = mAaA,y (11)

TB −mBg = mBaB,y (12)

F −Mg − TA − TB = MaP,y (13)

This is three equations in six unknowns TA, TB, F, aA,y, aB,y, aP,y. We need more equa-
tions. We firstly have the following constraints:

aA,y + aB,y = 2aP,y (14)

aP,y = A. (15)

We obtain another by applying the analog of Newton’s Second Law to the rotation of
the pulley about its center of mass:

TAR− TBR =
1

2
MR2αz (16)

Finally we note the constraint that the angular acceleration of the pulley is related to
the acceleration of mass mB relative to the elevator in the y-direction as aB/E,y = Rαz,
but since the acceleration of the elevator relative to the ground is A, we find that
aB,y = aB/E,y + A so that

aB,y − A = Rαz. (17)

If we combine all equations we’ve discovered thus far, we can solve for F . The rest of
the solution is purely algebraic manipulation – the physics is complete. First, we utilize
and eliminate all of the constraints. For notational simplicity we make the definition
aB,y = a, then using all constraints gives

TA −mAg = mA(2A− a) (18)

TB −mBg = mBa (19)

F −Mg − TA − TB = MA (20)

TA − TB =
1

2
M(a− A) (21)

6



Subtracting the second equation from the first and then using the fourth equation gives
the following equation that can be solved for A:

1

2
M(a− A)−mAg +mBg = 2mAA−mAa−mBa. (22)

Solving for a gives

a =
mA(g + 2A)−mBg + 1

2
MA

mA +mB + 1
2
M

(23)

We can plug this back into the NSL equatins for masses mA and mB to obtain the
tensions TA and TB:

TA = mA(g + 2A− a) (24)

= mA

(mA +mB + 1
2
M)(g + 2A)−mA(g + 2A) +mBg − 1

2
MA

mA +mB + 1
2
M

(25)

=
mA(2mB + 1

2
M)

mA +mB + 1
2
M

(g + A). (26)

and

TB = mB(g + a) (27)

= mB

(mA +mB + 1
2
M)g +mA(g + 2A)−mBg + 1

2
MA

mA +mB + 1
2
M

(28)

=
mB(2mA + 1

2
M)

mA +mB + 1
2
M

(g + A) (29)

it follows that the force F in the spring is

F = M(g + A) + TA + TB (30)

=

(
M +

4mAmB + 1
2
M(mA +mB)

mA +mB + 1
2
M

)
(g + A) (31)

One we know the force in the spring, we can use the fact that this force determines
the length L of the spring according to

F = k(L− `) (32)

and we find

L = `+
1

k

(
M +

4mAmB + 1
2
M(mA +mB)

mA +mB + 1
2
M

)
(g + A) (33)
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(d) When mA = mB = m, the expression for the length of the spring vastly simplifies:

L = `+
1

k

(
M +

4m2 +Mm

2m+ 1
2
M

)
(g + A) (34)

= `+
1

k
(M + 2m)(g + A) (35)

i. When A→ 0, our mathematical answer gives

L→ `+
1

k
(M + 2m)g (36)

which agrees with our predicted answer.

ii. When A→ −g, we obtain L = ` which agrees with our predicted answer.

iii. When A→ g, we obtain

L→ `+
1

k
(M + 2m)(2g) (37)

which agrees with our predicted answer. PHEW!

(e) In the case mA 6= mB but A → 0, we obtained intuition for what would happen in
the further special case that one of the masses was zero. Let’s say that mA → 0 for
example, then our answer reduces to

L→ `+
1

k

(
M +

1
2
MmB

mB + 1
2
M

)
g (38)

= `+
1

k

(
M +

1
2
M

mB + 1
2
M
mB

)
g (39)

< `+
M +mB

k
g (40)

This agrees with our intuition that the tension in the spring will be less than if the
weight (M +mB)g were hanging from the pulley.
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Problem 3.

Nancy is spinning on an ice rink (effectively frictionless) at a certain angular speed ω.
Josh throws her a water bottle, and she catches it. Let the word “system” refer to the bottle
+ Nancy. Let the z-direction point vertically, away from the ice and perpendicular to it.

For all of the following questions, consider the time interval from the moment just after
Josh lets the water bottle go, to the moment just after Nancy catches it.

(a) Is the total linear momentum of the system conserved in the z-direction? Justify
mathematically, and explain the math in words.

(b) Is the total linear momentum of the system conserved in the x-y-direction? Justify
mathematically, and explain the math in words.

(c) Is the total angular momentum of the system conserved in the z-direction? Justify
mathematically, and explain the math in words.

(d) Is the total angular momentum of the system conserved in the x-y-direction? Justify
mathematically, and explain the math in words.

Solution.

(a) If the net external force in the z-direction is zero, then the total momentum of the
system in the z-direction is conserved, otherwise, it’s not. When the water bottle
is flying to Nancy, it is acted on by gravity, and during that time there is a net z-
component of force due to gravity on the water bottle, so the momentum of the system
in the z-direction is not conserved.

(b) After the water bottle is released, there are no external forces on the system in the
x-y-direction, so the total momentum of the system in this plane is conserved.

(c) If the net external torque in the z-direction is zero, then the total angular momentum
in the z-direction is conserved. Since All force on the system are vertical (normal and
gravity), the external torques on the system are perpendicular to the z-direction, so
the z-component of the net external torque is zero. Thus, the z-component of the total
angular momentum of the system is conserved.

(d) When the water bottle is in the air, there is a net external torque on the system in the
x-y plane due to gravity as noted in part (a), so the angular momentum of the system
in this direction is not conserved.
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Problem 4.

A large-diameter bowl of mass M sits on a cooking scale. A small amount of water of
mass m is slowly poured into the bowl out of a cup from a height h above the bottom of the
bowl. It takes a time T from the moment when the water first hits the bottom of the bowl
to the moment when all of the water has flowed in. The water flows in at a constant mass
per unit time. The bowl starts empty. Let t = 0 be the moment at which the water first
strikes the bowl.

(a) As t approaches T from values less than T , will the scale show a weight less than, equal
to, or greater than (M +m)g? Use physical reasoning and minimal math if possible.

(b) Determine an expression for the weight as a function of time that the scale reads from
t = 0 until the moment when the last of the water strikes the bowl?

(c) Does your answer in part (b) agree with your answer in part (a)? Explain.

(d) Is there a time when the scale reads a weight (M + m)g? If not, explain why not. If
so, determine an expression for this time.

Solution.

(a) In the limit that t→ T from values less than T , all of the mass of the water will have
poured into the bowl, but there will still be a force of the water flowing into the bowl
as well, so one would expect a weight greater than (M +m)g.

(b) This is a mass flow problem. We apply the mass flow equation to the bowl with the
water flowing into it in the vertical direction along which the water is falling which we
call the y-direction:

Fext,y = M(t)
dv

dt
(t)− dM

dt
(t)uy. (41)

Since the bowl is at rest on the scale, dv/dt = 0, so the first term on the right vanishes.
Since a mass m falls into the bowl in a time T at a constant rate, the mass flow rate
dM/dt = m/T . Since the water falls into the bowl from a height h, kinematics tells us
that it hits the bowl with a velocity uy = −

√
2gh (where we have taken the positive

y-direction to point upward). The force of the scale on the bowl is a normal force N
in the positive direction (this is what the scale reads). There is also a gravitational
force on the bowl plus the mass in it at time t given by (M + (m/T )t)g. These two
forces combine to give the net external force in the y-direction. Putting all of these
observations together into the mass flow equation gives

N −
(
M +

m

T
t
)
g = −m

T
(−
√

2gh). (42)
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It follows that the weight the scale reads as a function of time while the water is falling
is

N =
(
M +

m

T
t
)
g +

m

T

√
2gh (43)

(c) In the limit t→ T , the weight the scale reads becomes

N → (M +m)g +
m

t

√
2gh > (M +m)g (44)

As expected, the scale reads a force greater than the combined weight of the falling
water and the bowl. In fact, the extra term is precisely the “thrust” force of the falling
water.

(d) There is a time when the water is falling that the scale reads (M +m)g which we can
solve for by using our answer to part (b) and setting F = (M +m)g:

(M +m)g =
(
M +

m

T
t
)
g +

m

T

√
2gh (45)

Solving for t gives

t =
T

m

(
M +m− m

T

√
2h

g
−M

)
(46)

= T −

√
2h

g
. (47)
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Problem 5.

A small ball is launched from the ground onto the corner of a cliff as shown.

(a) For which launch angles θ in the range [0, π] is it possible for the ball to hit the corner?
Explain in the most convincing way you can.

(b) For a given angle θ that does allow the ball to hit the corner, what launch speed v0 is
necessary for the ball to precisely hit the corner?

(c) Examine the limiting cases θ → π/2 and θ → π/4. What happens to the required
launch speed in each of these cases according to the formula you derived from part
(b)? Does the behavior of your formula make sense in these limiting cases? Explain
with physical reasoning.

Solution.

(a) We first enumerate the launch angles for which the ball cannot hit the cliff. What
remains will be the launch angles that allow the ball to hit the corner. If θ > π/2, then
the ball will be launch in the direction opposite the cliff, so it certainly will not be able
to hit the corner. When θ = π/2. The ball also will not be able to hit the cliff because
it will be traveling vertically upward and then back down again. When θ ≤ π/4, then
the ball cannot hit the corner either. Too see why, notice that if the ball is launched
with near infinite speed, then it will travel in an essentially straight line, so if it’s
launched very fast at an angle just less than π/4, then it can reach the corner. But for
any lower angle, the ball’s trajectory will always curve downward and will either hit
the wall of the cliff or the ground before reaching the horizontal position of the corner.

Hence, the values of θ for which the ball can hit the corner are π/2 < θ < π/4 .

(b) If we take the launch point to be the origin, then the x- and y-positions of the ball as
a function of time will be

x = v0 cos θt (48)

y = v0 sin θt− 1

2
gt2. (49)
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If we want the ball to hit the corner, then we want its trajectory to intersect the point
x = L and y = L. Plugging these equations into the equations above, and using the
x-equation to eliminate t, we obtain the following equation for v0:

L = L tan θ − 1

2
g

(
L

v0 cos θ

)2

(50)

Solving for v0 gives

v0 =

√
gL

2 cos θ(sin θ − cos θ)
(51)

(c) When θ → π/2, we have cos θ → 0 and sin θ → 1, so v0 → ∞. This agrees not only
with the intuition that at θ = π/2, the ball cannot hit the corner, but also with the
additional intuition that as the launch angle goes close to vertical, a higher speed is
necessary for the very small horizontal component to allow the ball to even get to the
corner. When θ → π/4, we have cos θ → 1/

√
2 and sin θ → 1/

√
2. This implies again

that v0 →∞ since there is a sin θ − cos θ term in the denominator. This again agrees
with the intuition that if we want to through the ball straight at the corner, then we
need its trajectory not to curve downward much relative to gravity, so we need to throw
it very hard.
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