Problem 1 (3+3+4+10)

The displacement $u(t)$ of a dynamic system is governed by the following second order, linear, differential equation (SLDE)

 $m\ddot{u} + c\dot{u} + k\dot{u} = F(t)$ $u(0) = u_0$, $\dot{u}(0) = \dot{u}_0$

 m is the mass.

where $\begin{bmatrix} c & \text{is the damping constant,} \\ \text{if } c & \text{if } c \end{bmatrix}$ *c*

 is the spring constant, and *k*

 $F(t)$ is the externally applied force

(a) Define the following in terms of the displacement $u(t)$ and structural parameters m, c, k

- steady state response of the system
- critically damped system

(b) Using linearity of the solution, write down the general form of the solution in terms of u_0 , \dot{u}_0 and $F(t)$

(c) If $m = 8$ lb, $k = 16 \frac{\text{lb}}{\text{ft}}$, $c = \frac{1}{4} \frac{\text{lb-sec}}{\text{ft}}$, $F(t) = 4\cos(2t)$ lb, find the amplitude of the steady state response. Do not use any formula.

$$
= min + c \dot{u} + k u = P(t) \qquad u(0) = u_0 \qquad \dot{u}(0) = \dot{u}_0
$$
\n
$$
= 5f c - \frac{1}{4} \int \frac{f}{2} dt = f \circ f \circ \dot{u} = 0
$$
\n
$$
= 1 \qquad u(t) = 5f \circ u \circ f
$$
\n
$$
= 1 \qquad u(t) = \frac{1}{2} \cdot \frac{1}{2
$$

$$
u + 26u + w - w
$$
\n
$$
u + 26u + w - w
$$
\n
$$
u = 2
$$

$$
2r_{1}2r_{2}=-b_{1}-b_{2}=\frac{c}{2m}=-\frac{c}{2m}
$$

\n $2r_{1}2r_{2}=-b_{1}-b_{2}=\frac{c}{2m}(-\frac{c}{2m})t$
\n $u_{n}(t)=4e^{-(c/2m)t}+6te^{-(c/2m)t}+u_{p}(t)$
\n $u_{gen}(t)=4e^{-(c/2m)t}+6t$

 $\frac{1}{2}b(t) = u_0 \nleftrightarrow (t) + u_0 \nleftrightarrow (t) + \int_0^t F(t) \nleftrightarrow (t-c) dt$ where φ_1 , φ_1 & φ_3 are, structural functions

 $\label{eq:2.1} \frac{1}{\sqrt{2}}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}$

 $\frac{1 \cdot 2}{2}$

15
$$
u_1 = 8u_0
$$

\n16 $k = 16u_0/h$
\n2 $l = \frac{1}{1} \frac{1065e^{-t}}{64}$
\n2 $l = \frac{1}{1} \frac{1065e^{-t}}{64}$
\n3 $u + \frac{1}{4}u + 16u = 4$ or $2t$
\n3 $u + \frac{1}{4}u + 16u = 0$
\n4 $u = e^{t}$
\n4 $u = 32e^{t} + r + 64 = 0$
\n4 $u = 1$
\n4 $u = 1$
\n4 $u = 1$
\n4 $u = 1$
\n5 $u = 1$
\n6 $u = 1$
\n7 $u = 1 + \sqrt{1 - 432 \cdot 64}$
\n8 $u = 6e^{t} + 1$
\n9 $u = 1$
\n10 $u = 6e^{t} + 1$
\n11 $u = 1$
\n12 $u = 0$ of 6 $u = 1$
\n13 $u = 0$ of 16 $u = 1$
\n14 $u = 1$
\n15 $u = 1$
\n16 $u = 1$
\n17 $u = 1$
\n18 $(u) = 4$ or $2t - 48$ and $2t - 48$ and $3t$
\n19 $u = 4$ and $2t - 48$ and $3t$

32A
$$
cos 2k = 328 sin 2k = \frac{1}{2}x sin 2k + \frac{1}{2}8 sin 2k
$$

\n4.16A $cos 2k + 168 sin 2k = 3 cos 2k$

\n6.22

\n7.2

\n8.2

\n9.2

\n10.2

\n11.2

\n12.2

\n13.2

\

 ϵ_1

 $\begin{array}{c} 1.7 \\ -1.7 \end{array}$

Problem 2 (6+6+8)

a. Explain the method of undetermined coefficients used to determine the particular solution y_p of a given nonhomogeneous SLDE.

Is the method applicable to any general SLDE?

Does the form of y_p depend on the solution of the corresponding homogenous problem?

- b. **Write down the forms of the particular solution** of the differential equation $y'' - 4y' + 4y = g(t)$ using the method of undetermined coefficients for the following cases
	- 1. $g(t) = t \sin(t) e^t$ 2. $g(t) = \sin(t) + te^{2t}$ 3. $g(t) = t + \cos(t) + e^{2t}$

For the third case above, derive the **complete general solution** of the SLDE.

Problem 2.

· find homogeneous solution α . ·· - guess" particular solution given g(t) - if there is repetition between guessed-yo & homogeneous solutions, multiply guerred-yp · differentiate final guessed yr as many times as needed in order to plug, in grussed you you in into problem statement. · plug in ye, ye', ye" into problem statement
with glt) on right hand side
• compare left & right hand sides of eqn to find wellicients of gnessed yp. · check that the grussed yp (with wefficients) are valid NOT applicable to any general SLDE. YES, yp depends on the corresponding homogeneous solution in that if a term is repeated, the
gnessed ye is multiplied by t until it is in a $y'' - 4y' + 4y = g(t)$ D_{\sim} $CE.$ 1^2 -41 $+4$ -0 $(1 - 2)^2 = 0$ voots : 2, 2 et + Citert $1. q(t) = tsn(t)e^{t}$ $-yp(t) = [(A_0+A_1t)cos(t) + (B_0+B_1t)sin(t)]e^t$

 2.2

Problem2

مه

 $\mathcal{L}^{\text{max}}_{\text{max}}$

$$
\begin{array}{lll}\n\underline{b.} & \underline{2.} & \underline{q}(t) = \sin(t) + te^{2t} \\
& \therefore & \underline{y}_1(t) = A_1 \cos(t) + A_2 \sin(t) + t^2 (A_3 + A_4 + e^{2t}) \\
& \underline{3.} & \underline{q}(t) = t + \cos(t) + e^{2t} \\
& \therefore & \underline{y}_1(t) = (A_0 + A_1t) + A_1 \cos(t) + A_3 \sin(t) + A_1 t^2 e^{2t} \\
& \underline{1.} & \underline{y}_1(t) = A_0 + A_1t + A_1 \cos(t) + A_3 \sin(t) + A_1 t^2 e^{2t} \\
& \underline{y}_1(t) = A_1 - A_2 \sin(t) + A_3 \cos(t) + 2A_4 e^{2t} + 2A_4 e^{2t} \\
& \underline{y}_1(t) = -A_2 \cos(t) - A_3 \sin(t) + 2A_4 e^{2t} + 4A_4 e^{2t} \\
& + 4A_4 t^2 e^{2t} + 4A_4 t^2 e^{2t} + 4A_4 t^2 e^{2t} \\
& + 4A_4 - A_2 \sin(t) + A_3 \cos(t) + 2A_4 t^2 e^{2t} + 2A_4 t^2 e^{2t} \\
& + 4A_4 - A_2 \sin(t) + A_3 \cos(t) + 2A_4 t^2 e^{2t} \\
& + 4A_4 - A_4 \sin(t) + A_2 \cos(t) + 2A_4 t^2 e^{2t} \\
& + 4A_4 t^2 e^{2t} \\
& + 4
$$

Roblem 2

b. complete general solution
\n
$$
12.6 + 4.6 = 4
$$

\n $12.6 + 4.6 = 4$
\n $13.6 = 4$
\n $14.1 = 1$
\n $15.14 - 4.1 = 0$
\n $16.1 + 4.6 = 1$
\n $17.1 + 4.6 = 1$
\n $18.1 + 4.6 = 1$
\n $19.1 + 19.1 + 39.1 = 0$
\n $19.1 + 19.1 = 1$
\n $19.1 + 19.1 = 1$

 $\mathcal{L}^{\text{max}}_{\text{max}}$ and $\mathcal{L}^{\text{max}}_{\text{max}}$

 2.3

Problem 3 $(4+4+6+6)$

Consider a linear, $n - th$ order differential equation with constant coefficients

$$
L[y] = a_0 y^{(n)} + a_1 y^{(n-1)} + \ldots + a_{n-1} y' + a_n y = g(t), \quad y^{(n)} = \frac{d^n y}{dx^n}
$$

- a. Explain the procedures leading to the complete solution of the homogenous equation $L[y] = 0$
- b. Does the form of the particular solution $y_p(t)$ of $L[y] = g(t)$ depend on the coefficients a_0, a_1, \ldots, a_n and the form of $g(t)$? If so, explain the nature of such dependency.
- c. For the fourth order equation $L[y] = y^{(4)} + 3y'' 4y = g(t) = t + t^2 e^t + 3t \sin(2t)$, derive the general solution of $L[y] = 0$, and
- d. Using result in (c), write down the form of the particular solution y_p of $L[y] = g(t)$. Explain your form of y_p . Do not solve for the unknown constants in your formulation.

$Solution$

MAE-182A Midterm Examination: A. Chatterjee: Spring 2011 Page 8 of 10