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Problem 1 (5+5+10)  
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Problem 2 (6+6+8)  
 
1. Describe and derive the formula for the each of the following methods in solving 
general second order linear differential. Also, mention the kind of problem where these 
methods can be applied. 

(a) method of variation of parameters 
(b) Method of reduction of order 

2. If ( ) 1 /y t t= is one of the fundamental solution of the differential equation 
2 3 0,  0t y ty y t+ + = >  

derive the other fundamental solution using the reduction of order. 
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Problem 3 (5+5+10+5)  
 

 
a)  Determine the radius of convergence of the following power series: 
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b)  Determine and classify the singular points of the following differential equation: 
   22 ( 2) '' 3 ' ( 2) 0x x y xy x y− + + − =  
 
For the following differential equation 
  
  2 '' ' ( 2) 0x y xy x y+ + − =  
 
c)  determine the indicial equation, its roots, and the recurrence relation 
d)  find the series solution (x>0) corresponding to the larger root 
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Problem 4 (5+6+6) 
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Problem 5 (15+10) 
 

 a. Find the fundamental matrix ( )tΦ  satisfying 
1 0

(0)
0 1
⎛ ⎞

Φ = = ⎜ ⎟
⎝ ⎠

I  for the following 

homogeneous differential equation 
1 1

 where 
4 2
⎛ ⎞′ = = ⎜ ⎟−⎝ ⎠

x Ax A  

 b. Using the above result, solve the nonhomogeneous differential equation 
2

2

t

t

e
e

−⎛ ⎞
′ = + ⎜ ⎟⎜ ⎟−⎝ ⎠

x Ax  

 Do not integrate. 
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Problem 6 (5+10+10) 
 
Consider the heat conduction problem of finding the temperature ( , )u x t in a uniform rod 
of length  with insulated ends so that there is no passage of heat through them. The 
initial temperature distribution is given by ( ,0) ( )u x f x=  where ( )f x is a known 
function of time in 0 x≤ ≤ . 
 
a. Write down the mathematical formulation of the problem with the governing 
differential equation for ( , )u x t , and all boundary and initial conditions needed for the 
complete solution of ( , )u x t . 
 
b. Using a variable separable solution ( , ) ( ) ( )u x t X x T t= , reduce the problem to a 
Sturm-Liouville boundary value problem. Show that 0λ =  is an eigen value and find the 
corresponding eigen function. 
 
c. Derive the complete solution of the problem in terms of ( )f x .  


