MECHANICAL & AEROSPACE ENGINEERING DEPARTMENT UNIVERSITY OF CALIFORNIA, LOS ANGELES

MAE 182A

MATHEMATICS OF ENGINEERING

SPRING, 2006

INSTRUCTOR

CHATTERJEE, A. K.

FINAL EXAMINATION

June 13, 2005

INSTRUCTIONS: SHOW ALL CALCULATIONS ON THESE PAGES. ATTACH ADDITIONAL PAGES AS NECESSARY.

 $\overline{}$

 $S_O_L_U_T_I_O_N_$

Your Student ID ___

Problem 1 (4+8+3)

Consider the first order, differential equation of the form $y' = f(y)$.

- 1. Define the following terms;
	- a. critical or equilibrium solution
	- b. asymptotically stable solution
	- c. semistable solution
	- d. unstable solution

2. If $f(y) = ay - b\sqrt{y}$, $y \ge 0$, $a > 0$, $b > 0$, $y(0) = y_0 \ge 0$, determine the equilibrium points,and classify each one as asymptotically stable, unstable or semistable.

3. Sketch (do not solve the differential equation) the nature of solution for various y_0 near the equilibrium points.

1.

- a. If $y = y_0$ is a solution of $f(y) = 0$, then $y = y_0$ is an equilibrium solution of the differential equation. If the initial condition is $y(0) = y_0$, then $y(t) = y_0$ for all t.
- b. If the initial condition is $y(0) = y_1$ where y_1 is in the neighborhood of y_0 , and the solution $y(t)$ approaches to y_0 i.e., $\lim_{t\to\infty}y(t)=y_0$, then $y=y_0$ is said to be asymptotically stable.
- c. If the initial condition is $y(0) = y_1$ where y_1 is in the neighborhood of y_0 , and the solution $y(t)$ approaches to y_0 i.e., $\lim_{t\to\infty} y(t) = y_0$, when $y_1 > y_0$, but moves away from y_0 , when $y_1 < y_0$ or vice versa, then $y = y_0$ is said to be a semistable solution
- d. If the initial condition is $y(0) = y_1$ where y_1 is in the neighborhood of y_0 , and the solution $y(t)$ moves away from y_0 when time increases, then $y = y_0$ is said to be an unstable solution.

The nature of equilibrium solution can be derived from the nature of $f(y)$ in the neighborhood of $y = y_0$.

2. Here $f(y) = ay - b\sqrt{y} = \sqrt{y} (a\sqrt{y} - b)$. Since the equilibrium solution are the

roots of $f(y) = 0$, we have two equilibrium solutions $y = y_0 = 0, \frac{b^2}{a^2}.$

Near $y = 0$, $y > 0$, $f(y)$ is negative, and hence the solution return to the stable state $y = 0$. Thus, $y = 0$ is a stable equilibrium point.

Near the initial value $\boldsymbol{\mathsf{y}}_{{}_{1}}$ is near 2 $\overline{2}$ – J₂ *b* $y = \frac{b}{a^2} = y_2$, then $f(y) = \begin{cases} 0 & \text{if } y_1 > y_2 \\ 0 & \text{if } y_1 < y_2 \end{cases}$ 0 if $(y) = \begin{cases} 0 & \text{if } \\ 0 & \text{if } \end{cases}$ $f(y) = \begin{cases} > 0 \text{ if } y_1 > y \\ 0 & \text{if } y_2 > y \end{cases}$ $y_1 < y$ $=\begin{cases} > 0 \text{ if } y_1 > \\ 0 & \text{if } y_2 > \end{cases}$ $\begin{cases} 5 & 1 \leq 2 \\ 0 & \text{if } y_1 < y_2 \end{cases}$ Hence $y = y_2$ is a semistable equilibrium state.

Problem 2 (15)

The displacement of a mass-spring-dashpot model of a forced, dynamic system is governed by the differential equation $m\ddot{x} + c\dot{x} + kx = F(t)$.

If $m = 2kg$, $k = 3\frac{N}{r}$, $c = 1\frac{N \cdot s}{r}$, $F(t) = 4\sin 3t - 3\cos 3t$ $\frac{m}{m}$, $c = 1 \frac{m}{m}$, $F(t) = 4 \sin 3t - 3 \cos 3t$, derive the steady state **response in** the amplitude-phase shift form $R\sin(\omega t - \delta)$.

Do not use any formula.

Solution

The solution of the differential equation can be written as $u(t) = u_c(t) + u_p(t)$ where $u_c(t)$ is the solution to the homogeneous equation ($F(t) = 0$), and $u_p(t)$ is the particular solution. In the presence of damping, $u_c(t)$ approaches zero as time increases, ane hence the steady state solution $u_s(t)$ is equal to $u_p(t)$.

 $u_p(t)$ can be derived using the method of undetermined constants. Since the loading $F(t) = 4 \sin 3t - 3 \cos 3t$, $u_p(t)$ can be written as $u_p'(t) = \omega(-a\sin\omega t + b\cos\omega t)$. $u_p''(t) = -\omega^2 (a \cos \omega t + b \sin \omega t)$ $u_p(t) = a \cos \omega t + b \sin \omega t, \omega = 3$

Substituting in the differential equation, we have

 $-2\omega^2(a\cos\omega t + b\sin\omega t) - \omega(a\sin\omega t - b\cos\omega t) +$

 $+3(a\cos\omega t + b\sin\omega t) = 4\sin\omega t - 3\cos\omega t$

Equating coefficients of $\cos \omega t$ and $\sin \omega t$ we have,

$$
-2\omega^2 a + \omega b + 3a = -3
$$

$$
-2\omega^2 b - \omega a + 3b = 4
$$

Solving for a and b , we have

Hnce the steady state solution is

Problem 3 (5+12+3)

4. Show that $x = 0$ is a regular singular point of the differential equation

$$
3x^2y'' + 2xy' + x^2y = 0
$$

- 5. Find two fundamental series solutions of the above equation **upto three nonzero terms**.
- 6. Are these solutions bounded as $X \rightarrow 0$

Note: No formulae needed. Directly substitute correct form of solution and equate coefficients of like terms.

Solution:

Here
$$
xp(x) = \frac{2}{3}
$$
, and $x^2q(x) = \frac{x^2}{3}$, which are both analytic at $x = 0$. Thus at $x = 0$,
\n
$$
P(x) = 3x^2 = 0
$$
, and $\lim_{x \to 0} [xp(x)] = \frac{2}{3} = \text{finite}$ and $\lim_{x \to 0} [x^2q(x)] = 0 = \text{finite}$. Hence

 $x = 0$ is a regular singular point. Set

$$
y = x^{r}(a_0 + a_1x + a_2x^2 + \dots + a_nx^n + \dots).
$$
 Substitution into the ODE results in

$$
3\sum_{n=0}^{\infty} (r+n)(r+n-1)a_n x^{r+n} + 2\sum_{n=0}^{\infty} (r+n)a_n x^{r+n} + \sum_{n=0}^{\infty} a_n x^{r+n+2} = 0.
$$

It follows that

$$
a_0[3r(r-1)+2r]x^r + a_1[3(r+1)r+2(r+1)]x^{r+1} ++ \sum_{n=2}^{\infty} [3(r+n)(r+n-1)a_n + 2(r+n)a_n + a_{n-2}]x^{r+n} = 0.
$$

Assuming $a_0 \neq 0$, the *indicial equation* is $3r^2 - r = 0$, with roots $r_1 = 1/3$, $r_2 = 0$. Setting the remaining coefficients equal to *zero*, we have $a_1 = 0$, and

$$
a_n = \frac{-a_{n-2}}{(r+n)[3(r+n)-1]}, \ \ n=2,3,\cdots.
$$

It immediately follows that the *odd* coefficients are equal to *zero*. For $r = 1/3$,

$$
a_n = \frac{-a_{n-2}}{n(1+3n)}, \ \ n = 2, 3, \cdots.
$$

So for $k = 1, 2, \dots$,

UCLA: MAE-182A: Chatterjee: Winter, 2010 Final Examination: Page 19

Problem 3: Solution Continued….

$$
a_{2k} = \frac{-a_{2k-2}}{2k(6k+1)} = \frac{a_{2k-4}}{(2k-2)(2k)(6k-5)(6k+1)} = \frac{(-1)^k a_0}{2^k k! \cdot 7 \cdot 13 \cdots (6k+1)}.
$$

For $r=0$,

$$
a_n = \frac{-a_{n-2}}{n(3n-1)}, \quad n = 2, 3, \cdots.
$$

So for $k = 1, 2, \dots$,

$$
a_{2k} = \frac{-a_{2k-2}}{2k(6k-1)} = \frac{a_{2k-4}}{(2k-2)(2k)(6k-7)(6k-1)} = \frac{(-1)^k a_0}{2^k k! \cdot 5 \cdot 11 \cdots (6k-1)}.
$$

The two linearly independent solutions are

$$
y_1(x) = x^{1/3} \left[1 + \sum_{k=1}^{\infty} \frac{(-1)^k}{k! \cdot 7 \cdot 13 \cdots (6k+1)} \left(\frac{x^2}{2}\right)^k \right]
$$

$$
y_2(x) = 1 + \sum_{k=1}^{\infty} \frac{(-1)^k}{k! \cdot 5 \cdot 11 \cdots (6k-1)} \left(\frac{x^2}{2}\right)^k.
$$

Problem 4 (4+3+8)

1. Using the definition of Laplace transform, derive the relation between the Laplace transforms of $f(t)$ and $\varphi(t)$ where $\varphi(t)$ is obtained by a translation of $f(t)$ a distance $t₀$ as shown below.

Problem 5 (20)

Find the general solution of the system of linear, first order differential equations

$$
\mathbf{x}' = \begin{pmatrix} 1 & 1 \\ 4 & 1 \end{pmatrix} \mathbf{x} + \begin{pmatrix} 2 \\ -1 \end{pmatrix} \mathbf{e}^t, \ \mathbf{x}(t) = \begin{pmatrix} x_1(t) \\ x_2(t) \end{pmatrix}
$$

using the following steps.

- First solve the homogeneous problem using eigen values and eigen vectors
- Solve the nonhomogeneous problem using the method of undetermined constants.

7. The solution of the homogeneous equation is

$$
\mathbf{x}_c = c_1 \begin{pmatrix} e^{-t} \\ -2e^{-t} \end{pmatrix} + c_2 \begin{pmatrix} e^{3t} \\ 2e^{3t} \end{pmatrix}.
$$

Based on the simple form of the right hand side, we use the method of *undetermined coefficients*. Set $\mathbf{v} = \mathbf{a} e^t$. Substitution into the ODE yields

$$
\begin{pmatrix} a_1 \\ a_2 \end{pmatrix} e^t = \begin{pmatrix} 1 & 1 \\ 4 & 1 \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} e^t + \begin{pmatrix} 2 \\ -1 \end{pmatrix} e^t.
$$

In scalar form, after canceling the exponential, we have

$$
a_1 = a_1 + a_2 + 2
$$

$$
a_2 = 4a_1 + a_2 - 1,
$$

with $a_1 = 1/4$ and $a_2 = -2$. Hence the particular solution is

$$
\mathbf{v} = \begin{pmatrix} 1/4 \\ -2 \end{pmatrix} e^t,
$$

so that the general solution is

$$
\mathbf{x} = c_1 \begin{pmatrix} e^{-t} \\ -2e^{-t} \end{pmatrix} + c_2 \begin{pmatrix} e^{3t} \\ 2e^{3t} \end{pmatrix} + \frac{1}{4} \begin{pmatrix} e^t \\ -8e^t \end{pmatrix}.
$$

8. The eigenvalues of the coefficient matrix are $r_1 = 1$ and $r_2 = -1$. It follows that the solution of the homogeneous equation is

$$
\mathbf{x}_c = c_1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^t + c_2 \begin{pmatrix} 1 \\ 3 \end{pmatrix} e^{-t}.
$$

Problem 6 (10+5)

Consider the two-point boundary value problem defined by

$$
y'' + \pi^2 y = a - \cos \pi x, \ 0 \le x \le 1, \ y(0) = 0 = y(1)
$$

- **1.** Find the eigen values and eigen functions of the corresponding Sturn-Liouville boundary value (SLBV) problem.
- **2.** Does the solution exist for all values of*a*? If not, find the value of *a*for which solution exists.
- **3.** Find the solution of the differential equation for the value of *a* found in the section 1

The differential equation can be written as

$$
L[y] = -y'' = \pi^2 y - a + \cos \pi x, \ 0 \le x \le 1, \ y(0) = 0 = y(1)
$$
 (1)

1. Associated Sturm-Liouville two-point boundary value problem is

$$
L[y] = -y'' = \lambda y, \ 0 \le x \le 1, \ y(0) = 0 = y(1) \quad (2)
$$

where λ is the eigen value.

Set $\lambda = \mu^2 \ge 0$, then the general solution is $y(x) = c_1 \cos \mu x + c_2 \sin \mu x$. Boundary conditions (BC) give $c_1 = 0$ and $c_2 \sin \mu = 0$. Since $c_2 \neq 0$ as that will make $y(x) = 0$, we get the characteristic equation $\sin \mu = 0 = \sin n\pi$, $n = 1,2,3...$, Thus the eigen values are $\lambda_n = n^2 \pi^2$, $n = 1,2,3...$, and the eigen functions are $y = \varphi_n(x) = k_n \sin(n\pi x)$. Normalizing the eigen functions using the normalization condition 1 2 0 $\int \varphi_n^2(x) dx = 1$, we get $k_n = \sqrt{2}$. Hemce the normalized eigen functions are $\varphi_n(x) = \overline{\varphi}_n(x) = \sqrt{2} \sin(n\pi x)$ (3)

2. Solution of the nonhomogeneous problem

Writing the differential equation as

 $-\mathsf{y}'' = \eta \mathsf{y} + f(\mathsf{x})$, $\eta = \pi^2$, $f(\mathsf{x}) = -a + \cos(\pi \mathsf{x})$, $0 \le \mathsf{x} \le 1$, $\mathsf{y}(0) = 0 = \mathsf{y}(1)$, the solution $y(x)$ and $f(x)$ can be expanded as

$$
y(x) = \sum_{n=1}^{\infty} a_n \overline{\varphi}_n(x) , f(x) = \sum_{n=1}^{\infty} c_n \overline{\varphi}_n(x) \text{ where } c_n = \int_0^1 f(x) \overline{\varphi}_n(x) dx.
$$

Then $y(x)$ satisfies the BC of the problem as all $\overline{\varphi}_n(x)$ satisfies the BC. Substituting in the differential equation, and using $L\big[\overline{\varphi}_n(x)\big] = \lambda_n \overline{\varphi}_n(x)$, we have, after equating the coefficients of $\overline{\varphi}_n(x)$, $\lambda_n a_n = \eta a_n + c_n$ or $a_n(\lambda_n - \eta) = c_n$.

If
$$
\lambda_n \neq \eta
$$
, $a_n = \frac{c_n}{\lambda_n - \eta}$.

If $\lambda_n = \eta$, and $c_n = 0$, a_n is arbitrary. If $\lambda_n = \eta$, and $c_n \neq 0$, then the problem has no solution.

In this case $\lambda_1 = \pi^2 = \eta$, hence we need $(\pi x) dx = \frac{\pi}{6} -a + \cos \pi x \sin(\pi x)$ 1 1 1 0 0 $c_1 = \int f(x) \sin(\pi x) dx = \int [-a + \cos \pi x] \sin(\pi x) dx = 0$. This gives $a = 0$

3. Final solution of the inhomogeneous problem can be written as

$$
y(x) = \sum_{n=1}^{\infty} c_n \overline{\varphi}_n(x) = 2 \sum_{n=2}^{\infty} \frac{\int_{0}^{1} \cos \pi x \sin(n\pi x) dx}{(n^2 - 1)\pi^2} \sin(n\pi x) + c \sin \pi x
$$

or $y(x) = 4 \sum_{n=2}^{\infty} \frac{n \sin(n\pi x)}{(n^2 - 1)^2 \pi^3} + c \sin \pi x$

where *c* is arbitrary.

Solving the nonhomgeneos problem directly suing methods of Chapter 3, we get

$$
y(x) = -\frac{x}{2\pi} \sin \pi x + c \sin \pi x
$$

These two solutions are identical as it can be shown that the difference between these two solutions is proportional to sin π*x* .

Formulae Page

Problem 4

If $L[f(t)] = F(s)$, then $L^{-1}[sF(s)] = \frac{df}{dt} + f(0)\delta(t)$ *dt* where L and L^{-1} are the forward and inverse Laplace transform operators, respectively.

 $[\delta(t)] = 1$; $L[u_c(t)] = \frac{6}{1}$ 1 $e^{s_1t}-e^{s_2t}$. $1\qquad 1$ 2 $\mathbf{u}_1 \wedge \mathbf{v}_1 - \mathbf{v}_2$) ($\mathbf{v}_1 - \mathbf{v}_2$ 1 $e^{s_1 t}-e^{s_2 t}$ 1 1 $\left| \frac{1}{(s-s_1)(s-s_2)} \right| = \frac{e^s - e^s}{(s_1-s_2)}$; $\left| \frac{1}{(s+a)^2} \right| = te^{-s}$ − $\delta(t)$] = 1; $L[u_c(t)]$ = $\left[\frac{1}{(s-s_1)(s-s_2)}\right] = \frac{e^{s_1t}-e^{s_2t}}{(s_1-s_2)}; L^{-1}\left[\frac{1}{(s+a)^2}\right] =$ *cs* $L[\delta(t)] = 1$; $L[u_c(t)] = \frac{e}{t}$ $\left| L^{-1} \right| = \frac{1}{2}$ $\left| = \frac{e^{s_1 t} - e^{s_2 t}}{2}$; $L^{-1} \right| = \frac{1}{2}$ $\left| e^{-at} \right|$ *s* $s - s_1$ $(s - s_2)$ $(s_1 - s_2)$ $($ $s_3 + a_3)$

If
$$
L[f(t)] = F(s)
$$
, then
\n
$$
L[\dot{f}(t)] = sF(s) - f(0)
$$
\n
$$
L[\ddot{f}(t)] = s^2 F(s) - sf(0) - \dot{f}(0)
$$

where L is the Laplace transform operator.

More formulae will be added later.