Math 61: Introduction to Discrete Structures
Midterm #2

Instructor: Spencer Unger

February 24, 2014
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Good Luck! Be sure to justify your answers!
No calculators, books or notes are allowed.

Problem | Points | Score
1 20
2 20
3 20
4 20
5 20
Total 100

Version 1



1. Do the following:
{a) (10 points) Solve the following recurrence relation:

ap, = Bap_1 + 6an_g

with initial conditions ap = 9 and a; = 20.
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Problem 1 is continued on the next page.
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(b) (10 points) Let d,, be the number of strings of zeros and ones which do not contain
000 as a substring. Find a recurrence relation that d, satisfies. Don’t forget the
initial conditions and be sure to explain which counting principles you used to
obtain your answer.
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2. (20 points) Do the following:

(a) Imagine a trial in which you flip a coin 17 times in a row. Order matters in the
outcome of the trial.

i. Count the number of outcomes which have an even number of heads.
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ii. Count ﬁhe number of outcomes which have an odd number of heads.
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iii. Find a simple formula for the sum of your answers from (a) and (b). Justify
your answer.
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Problem 2 is continued on the next page.



(b) Show that if you choose 13 numbers between 1 and 20 there must be two which
differ by 5.
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3. (20 points) Do the following:

(a) Consider the graph K;. Answer the following questions:

i. What is the largest number of edges you can remove and still have a Hamilton
cycle? Draw such a graph.
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ii. What is the smallest number of edges you need to add (multiple edges allowed)
to obtain a graph with an Euler cycle? Draw such a graph.
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iii. What are the smallest numbers of edges and vertices you need to add to create
a simple graph (no multiple edges allowed) with an Euler cycle? Draw such a
graph.
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{(b) A path is simple if it does not visit the same vertex twice. Count the number of
simple paths in K, of length 50.
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4. (20 points) For the purpose of this question a graph is a simple graph, that is ne self-

loops and no multiple edges. A graph G is n-connected if it remains connected after
removing any 7 — 1 edges. Do the following:

(a) Draw a graph which is 1-connected, but not 2-connected. .

(b) Draw a graph which is 2-connected, but not 3-connected

(¢) Prove that if n < k and a graph G is k-connected, then G is n-connected.
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5. (20 points) Consider the graph G = (V, E) where V = R x R and {z,y} € F if and
only if the distance from z to ¢ is 1. Answer the following questions about G.

(a) Answer true or false for each of the following:
L{(0,0,(2. el T
ii. {(1,0),(0,1)} e FE 1=
iii. There is a path of length 7 from (0,0) to (5,5). T
iv. There is a path of length 8 from (0,0) to (5,5). "1

v. For any vertices p1, p2 and ps, if {p1,p2} € E and {pa,ps} € E, then {p1,p3} € -
E.

(b) Given a point p € V, describe the set {z € V | {z,p} € E}. Drawing a picture is
fine.
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{c) Prove or disprove:. G is connected. T s TS \%\m&’
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