1. Consider the sets S, T, and U defined below:

$$S = \{ n \in \mathbb{Z} : \text{there is } m \in \mathbb{Z} \text{ such that } n = m^2 \} = \{ 0, 1, 1, 9, \dots \}$$

$$T = \{ r \in \mathbb{R} : \text{there is } x \in \mathbb{R} \text{ such that } r = \sqrt{x} \} = \{ 0, \infty \}$$

$$U = \{ r \in \mathbb{R} : -1 < r < 1 \} = \{ 0, \infty \}$$

Which of the following statements are true about these sets?

Circle all correct answers.

a. S and U are disjoint.

b.
$$T \cap U = U$$

c. $S \subseteq T$
d. $S \cap T = T$
e. $T \cup U = \{r \in \mathbb{R} : r+1 > 0\} = \{r \in \mathbb{R} : r > -1\} = \{r \in \mathbb{R$

2. In the Venn diagram below, shade the region corresponding to $(A \cap B) \cup (\overline{C} \cap A)$.

3. Draw a Hasse diagram for the partial order of divisibility on the set $S = \{2, 3, 4, 5, 8, 15\}$.

4. For a.-c., if the function f is *injective*, circle it.

If the function f is <u>not</u> injective then in the blank spaces <u>below</u> that function, write down two elements a, b of the domain such that $a \neq b$ but f(a) = f(b).

a.
$$f:[0,\infty)\to\mathbb{R}$$
 given by $f(x)=(x-1)^2+1$.

$$(c.)$$
 $f: \mathcal{P}(\{1,2,3\}) \to \mathcal{P}(\{1,2,3\}): S \mapsto \{1,2,3\} - S.$

5. State the inclusion-exclusion principle: If A and B are finite sets, then...

6. Let $S = \{0, 1, 2, 3\} \times \{1, 2, 3\}$ and let \sim be the relation on S defined by

$$(a,b) \sim (c,d)$$
 if $a+b=c+d$

List all the elements of the \sim -equivalence class [(1,1)].

Nis an equivalence relation (you do not need to prove this)

$$[(1,1)] = \{(0,2), (1,1)\}$$

7. One way to represent a relation is using a table.

Let $S = \{A, B, C, D\}$. We define a relation \square on S by writing an X in the <u>row</u> for X and the <u>column</u> for Y in the table if (and only if) $X \square Y$:

	A	B	C	D
\overline{A}	Χ	Χ		
\overline{B}	Χ		Х	
\overline{C}		Х	X	
\overline{D}				Χ

For example, reading the first row: $A \sqsubseteq A$ and $A \sqsubseteq B$, but $A \not\sqsubseteq C$ and $A \not\sqsubseteq D$. Using the table above, answer the following questions about the relation \sqsubseteq . In a.-c. you do not have to justify "Yes."

a. Is the relation \sqsubseteq reflexive? If you answered "No," why not?

No. B & B.

b. Is the relation \sqsubseteq *symmetric*? If you answered "No," why not?

Yes.

No. ALB and BEC but ARC.

8. Prove the following statement by mathematical induction: For all integers $n \ge 1$,

$$\sum_{k=1}^{n} k(k+1) = \frac{n(n+1)(n+2)}{3}$$

Try to keep your proof as organized as you possibly can!

Base case:
$$n=1$$

$$\sum_{k=1}^{n} k(k+1) = 1 \cdot 2 = 2$$
and
$$\frac{1(1+1)(1+2)}{3} = \frac{1 \cdot 2 \cdot 3}{3} = 2$$
Induction step: Assume $P(n)$.

$$\frac{n+1}{2} = \sum_{k=1}^{n} k(k+1) = \sum_{k=1}^{n} k(k+1) + (n+1) \cdot (n+2)$$

$$= \frac{n(n+1)(n+2)}{3} + (n+1)(n+2) = \frac{n(n+1)(n+2)(n+3)}{3}$$

$$= \left[\frac{n}{3} + 1\right] (n+1)(n+2) = \frac{(n+1)(n+2)(n+3)}{3}$$
So $P(n+1)$.