ANSWER KEY MATH 61, LECTURE 1 MIDTERM I

1. INDUCTION

Prove that the equation

$$\frac{1}{2} + \frac{1}{6} + \frac{1}{2} + \ldots + \frac{1}{n(n+1)} = \frac{n}{n+1}$$

holds for every integer $n \ge 1$.

Proof. Let P_n be the statement $\frac{1}{2} + \frac{1}{6} + \frac{1}{2} + \dots + \frac{1}{n(n+1)} = \frac{n}{n+1}$. We proceed by induction on n.

First we show the base case n = 1. This says:

$$\frac{1}{1(1+1)} = \frac{1}{1+1},$$

which means P_1 is true.

Now let $n \ge 1$ be given, and suppose that P_n is true. This means that

$$\frac{1}{2} + \frac{1}{6} + \frac{1}{2} + \dots + \frac{1}{n(n+1)} = \frac{n}{n+1}.$$

Adding $\frac{1}{(n+1)(n+2)}$ to both sides of the equation, we obtain

$$\frac{1}{2} + \frac{1}{6} + \frac{1}{2} + \dots + \frac{1}{n(n+1)} + \frac{1}{(n+1)(n+2)} = \frac{n}{n+1} + \frac{1}{(n+1)(n+2)}.$$

Now we simplify the right hand side.

$$\frac{n}{n+1} + \frac{1}{(n+1)(n+2)} = \frac{n}{n+1} \cdot \frac{n+2}{n+2} + \frac{1}{(n+1)(n+2)}$$
$$= \frac{n(n+2)}{(n+1)(n+2)} + \frac{1}{(n+1)(n+2)}$$
$$= \frac{n^2 + 2n + 1}{(n+1)(n+2)}$$
$$= \frac{(n+1)^2}{(n+1)(n+2)}$$
$$= \frac{n+1}{n+2}.$$

Hence $\frac{1}{2} + \frac{1}{6} + \frac{1}{2} + \ldots + \frac{1}{(n+1)(n+2)} = \frac{n+1}{n+2}$, which means P_{n+1} is true. We have shown that for all $n \ge 1$, P_n implies P_{n+1} .

By mathematical induction, P_n holds for all $n \ge 1$.

ANSWER KEY

2. Counting

How many five-letter words satisfy the following properties:

 $2 \cdot$

- (1) The first letter is A or B.
- (2) The last letter is X, Y, or Z.
- (3) There is at least one C.
- (4) There is exactly one D.

We have two choices for the first letter, three for the last letter, and three for the position of D (it can go into the second, third, or fourth position). After we have chosen these, we need to fill the remaining two spots with two letters, neither of which is a D and at least one of which is a C.

There are 25 pairs of letters where the first is a C and the second is not D, and there are 25 pairs of letters where the second is a C and the first is not D. Since there is one pair (CC) that falls into both categories, there are (by inclusion-exclusion) 25 + 25 - 1 = 49 possibilities for the last pair of letters.

This gives a total of

$$3 \cdot 3 \cdot 49 = 882$$

words with the four properties.

Alternatively, you can partition this set of five-letter words into those that contain exactly one C, and those that contain exactly two C's. There are

$$2 \cdot 3 \cdot 3 \cdot 2 \cdot 24 = 864$$

of the former, and

$$2 \cdot 3 \cdot 3 = 18$$

of the latter, for a grand total of 882 = 864 + 18.

3. Sets and Functions

Consider the function

$$s(x) = \{x\} : \{a, b, c, d\} \to \mathcal{P}(\{a, b, c, d\}).$$

(i) Is the function s injective?

Answer: Yes.

Justification: Recall that a function $f : A \to B$ is injective if it sends distinct elements of A to distinct elements of B. Formally, this means that for any $x, y \in A$, if $x \neq y$, then $f(x) \neq f(y)$. Equivalently, if f(x) = f(y), then x = y. We shall use the latter formulation.

Suppose that $x, y \in \{a, b, c, d\}$ and $\{x\} = \{y\}$. Since $x \in \{x\}$, it follows that $x \in \{y\}$, and therefore x = y because y is the only element of $\{y\}$. Said differently, if $\{x\} = \{y\}$, then these two sets have the same elements, and since the only element of $\{x\}$ is x, and the only element of $\{y\}$ is y, we conclude that x = y.

Note: in order to receive full credit on this problem, you had to answer correctly, and explain $why \{x\} = \{y\}$ implies x = y. Simply asserting this implication did not earn full marks. You had to talk about the elements of these sets in some way or another.

(ii) Is the function s surjective?

Answer: No.

Justification: Recall that a function $f : A \to B$ is surjective if the image of f is all of B. Formally, this means that for any $y \in B$, there is some $x \in A$ such that f(x) = y.

We need to show that there is an element of $\mathcal{P}(\{a, b, c, d\})$ that is not in the image of s. This follows by counting. The domain of s has 4 elements, the codomain has $2^4 = 16$ elements, and since s is a function, it assigns a unique value to every element of the domain. Therefore the function s misses at least 12 elements of the codomain. One can be more explicit. Any subset $X \subseteq \{a, b, c, d\}$ whose cardinality differs from 1 (e.g. $\emptyset, \{a, b\}, \{a, b, c\}, \{a, b, c, d\}$) is not in the image of s, because s(x) is always a singleton.

Note: in order to receive full credit on this problem, you had to answer correctly, and explain *why* there are elements of $\mathcal{P}(\{a, b, c, d\})$ that are not in the image of *s*. Giving an example or counting were both considered acceptable justification.

4. Relations

Consider the binary relation R on $\{1, 2, 3, 4\}$ whose matrix is

$$M = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 \end{pmatrix}.$$

- (a) Is R reflexive? No. 1 R 1 and 4 R 4.
 Using M: not every diagonal entry is 1.
- (b) Is R symmetric? No. 2 R 1 but 1 R 2. Using M: M is not symmetric, i.e. we do not have $M_{ij} = M_{ji}$ for all $i, j \in \{1, 2, 3, 4\}$. In particular, $M_{12} \neq M_{21}$.
- (c) Is R antisymmetric? Yes. The only pairs (i, j) for which both i R j and j R i hold are (2, 2) and (3, 3). Both of these pairs satisfy i = j. In terms of the matrix, whenever $i \neq j$ and $M_{ij} = 1$, we have $M_{ji} = 0$.

Note that, while in this case it is also true that whenever $i \neq j$ and $M_{ij} = 0$ we have $M_{ji} = 1$, this is not relevant to antisymmetry.

(d) Is R transitive? Yes. Using M is the best way to go here. We have

$$M^2 = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 2 & 1 & 2 & 0 \\ 1 & 0 & 1 & 0 \\ 2 & 1 & 2 & 0 \end{pmatrix}.$$

Every nonzero entry of M^2 is also nonzero in M (i.e. $(M^2)_{ij} \neq 0$ implies $M_{ij} \neq 0$), so $R \circ R$ refines R and hence R is transitive (by homework).