1. (2 points each) Multiple choice: Circle the right answer. You do NOT need to justify your answers.

If α is a string of length two, what is the number of substrings of α ?

(A) 2; (B) 3; (C) 4; (D) 5; |(E)| It depends on the string.

Explanation: The string *aa* has 3 substrings, but *ab* has 4.

In how many ways can we distribute 12 distinct books to 5 people: Alice, Bob, Casey, David and Emily?

(A) 12^5 ; (B) 5^{12} ; (C) C(12,5); (D) C(16,4); (E) C(16,11).

Explanation: We have to choose from 5 people 12 times. We use the multiplication principle to count.

In how many ways can we distribute 12 (identical) copies of the same book to 5 people: Alice, Bob, Casey, David and Emily?

(A) 12^5 ; (B) 5^{12} ; (C) C(12,5); (D) C(16,4); (E) C(16,11).

Explanation: We choose 12 people out of 5 with repetitions. The number of such combinations with repetitions is C(12 + 5 - 1, 5 - 1).

Let $X = \{1, 2, 3, 4\}$. If $f, g: X \to X$ are two functions such that $f \circ g$ is bijective, then:

(A) f has to be bijective, but g does not have to be bijective;

(B) g has to be bijective, but f does not have to be bijective;

|(C)| Both f and g have to be bijective;

(D) Neither f nor g have to be bijective.

Explanation: Since $f \circ g$ is surjective, we have that f has to be surjective (it must hit all the values). A surjective function between sets with the same number of elements is bijective. Hence f is bijective.

Since $f \circ g$ is injective, we have that f has to be injective. An injective function between sets with the same number of elements is bijective. Hence f is bijective.

2. Write down the answer to each question. You do NOT need to justify your answers. Also, you do not need to simplify expressions such as 2^6 , 6!, C(6,3), etc.

(a) Consider the set $X = \{1, 2, \dots, 10\}$.

(2 points) How many of the relations on X are NOT reflexive?

 $2^{100} - 2^{90}$

(2 points) How many of the relations on X are symmetric?

 $2^{10 \cdot 11/2} = 2^{55}$

(2 points) How many of the relations on X are symmetric OR reflexive (i.e. either symmetric, or reflexive, or both)?

 $2^{55} + 2^{90} - 2^{45}$

(2 points) How many of the relations on X are symmetric but NOT reflexive? $2^{55}-2^{45}$

(2 points) How many of the relations on X are both symmetric AND antisymmetric?

 2^{10} (for the matrix of the relation, we need to have 0's outside the diagonal, and we are free to choose 0 or 1's on the diagonal)

(b) (2 points) How many distinct strings can be obtained from the string AAABBCCCD by permuting (re-ordering) its letters?

$$\frac{9!}{3! \cdot 2! \cdot 3! \cdot 1!}$$

3. Let \mathbb{Z} be the set of all integers, and $\mathcal{P}(\mathbb{Z})$ the power set of \mathbb{Z} (consisting of all subsets of \mathbb{Z}). Consider the following relation R on $\mathcal{P}(\mathbb{Z})$:

$$(A,B) \in R \iff A \cap B \neq \emptyset.$$

Answer the following questions, fully justifying your answers. (If an answer is YES, explain why. If an answer is NO, give a counterexample.)

(a) (2 points) Is R reflexive?

No: $(\emptyset, \emptyset) \notin R$

(b) (2 points) Is R symmetric?

Yes: $A \cap B \neq \emptyset \iff B \cap A \neq \emptyset$

(c) (3 points) Is R transitive?

No: Let $A = \{1,2\}, B = \{2,3\}, C = \{3,4\}$. Then $(A,B) \in R$ and $(B,C) \in R$ but $(A,C) \notin R$.

(d) (3 points) Prove that $(A, B) \in R \circ R$ whenever A and B are nonempty.

Let $C = A \cup B$. Then $(A, C) \in R$ and $(C, B) \in R$, hence $(A, B) \in R \circ R$.

4. (10 points) Prove by induction on n that:

$$3^n \le (n+1)!$$

for any integer $n \ge 4$.

Base case n = 4: $3^4 = 81 \le 5! = 120$ is true.

Inductive step: Suppose $3^n \le (n+1)!$ and we want to show $3^{n+1} \le (n+2)!$. Multiplying $3^n \le (n+1)!$ by 3 we get $3^{n+1} \le 3 \cdot (n+1)!$. It now suffices to show that

 $3 \cdot (n+1)! \le (n+2)! = (n+1)! \cdot (n+2).$

Dividing both sides by (n+1)!, this is equivalent to $3 \le n+2$, or $1 \le n$, which is true.