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Problem 1

Determine if the following are true or false.

Part a

False. K61,2019 has vertices of odd degree 61 and so cannot have an Euler cycle.

Part b

False. The sum of the degrees of all vertices is always even! This is because
∑

v∈V δ(v) = 2|E| is even. So
we cannot have 9 vertices each of degree 3, as the sum of degrees would then be 27, which is odd.

Part c

False. Vertices 2 and 4 have no edges to any of vertices 1, 3, 5.

Part d

True. Color the vertices with two colors and this becomes clear.

Part e

True. Let a map to 5, b map to 1, c map to 3, d to 6, e to 2, and f to 4.

Problem 2

Part a

With the ansatz an = rn, we see
an = 4an−1 + 5an−2

gives
rn = 4rn−1 + 5rn−2

and hence
r2 = 4r + 5

Solving for r, we see
r2 − 4r − 5 = 0

(r − 5)(r + 1) = 0

so r = 5 or r = −1. Thus the general solution is

an = c1 · 5n + c2 · (−1)n
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Part b

With our initial conditions we see

5 = a0 = c1 · 50 + c2 · (−1)0 = c1 + c2

7 = a1 = c1 · 51 + c2 · (−1)1 = 5c1 − c2
Adding these equations we see

12 = 6c1

c1 = 2

c2 = 5− c1 = 3

so
an = 2 · 5n + 3 · (−1)n

Part c

We have
bn = b4n−1b

5
n−2

Taking log base two of both sides, we see

log2(bn) = 4 log2(bn−1) + 5 log2(bn−2)

Letting an = log2(bn), we see
an = 4an−1 + 5an−2

which by part a gives us the general solution

an = c1 · 5n + c2 · (−1)n

Since an = log2(bn), and b0 = 1, b1 = 16, the initial conditions translate to a0 = log2(1) = 0 and
a1 = log2(16) = 4.

Plugging these into our general solution we see

0 = a0 = c1 + c2

4 = a1 = 5c1 − c2
Adding these equations gives

4 = 6c1

so c1 = 4/6 = 2/3, and c2 = −c1 = −2/3.

So we get the solution

an =
2

3
· 5n − 2

3
· (−1)n

Translating to a solution for bn, we get

bn = 2an = 2( 2
3 ·5

n− 2
3 ·(−1)

n)
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Part d

To solve
cn = 4cn−1 + 5cn−2 + 16

we first compute the homogeneous solution, i.e. the general solution to

cHn = 4cHn−1 + 5cHn−2

By part a, the general solution to this is

cHn = d1 · 5n + d2 · (−1)n

Next, we compute a particular solution. Since the extra forcing term is constant, and r = 1 is not a solution
to the characteristic polynomial in part a, we may find a particular solution of the form cn = C, where C is
just a constant. Plugging this into our recurrence relation, we see

C = 4C + 5C + 16

so −8C = 16, so C = −2. Thus, a particular solution is cn = −2 for all n.

Finally, our general solution to this recurrence relation is the sum of the general homogenous and particular
solution, which gives

cn = d1 · 5n + d2 · (−1)n − 2

Finally we are ready for our initial conditions. Since c0 = 0 and c1 = 2, we see

0 = c0 = d1 + d2 − 2

2 = c1 = 5d1 − d2 − 2

Adding these equations we see
2 = 6d1 − 4

so d1 = 1, and d2 = 2− d1 = 1. Hence,

cn = 5n + (−1)n − 2
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Problem 3

See the attached image for the correct steps.
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Problem 4

Part a

We have a Hamiltonian cycle a− b− c− d− h− l − k − g − f − j − i− e− a.

Part b

Suppose this graph G = (V,E) had a Hamiltonian cycle H = (V,E′) with E′ ⊂ E. Recall that since H is a
hamiltonian cycle, H must be connected, have |E′| = |V | and δH(v) = 2 for all v ∈ V . We will make use of
the last property.

First, since δH(h) = 2 = δG(h), we must have both (h, i) ∈ E′ and (h, e) ∈ E′. (In words, since h has
degree precisely two, both edges incident to it must be present in any Hamiltonian cycle).

Similarly, since δH(j) = 2 = δG(j), we must have (j, i) ∈ E′ and (j, g) ∈ E′.

Next, since (i, h) ∈ E′ and (i, j) ∈ E′, and δH(i) = 2, we must have (i, e), (i, f), (i, g) 6∈ E′. (In words,
since i already has two incident edges in the Hamiltonian cycle, the remaining edges adjacent to it in G must
not be in the Hamiltonian cycle).

Next, since δH(f) = 2, δG(f) = 3, and (f, i) 6∈ E′ by the above, we must have (f, e) ∈ E′ and (g, e) ∈ E′.
(H must contain precisely two of the three incident edges to f , and we already ruled one edge out).

Next, since δH(e) = 2 and (e, h) ∈ E′ and (e, f) ∈ E′, we must have (e, i) 6∈ E′, (e, c) 6∈ E′, and (e, b) 6∈ E′.

Similarly, δH(g) = 2 and (g, j), (g, f) ∈ E′, so that (g, i), (g, c), (g, d) 6∈ E′.

Now we are ready to contradict! By assumption, H is a hamiltonian cycle and therefore connected. However,
H is a subgraph of G with (e, b), (e, c), (g, c), (g, d) 6∈ E′. Then there is no path from any of the bottom
vertices e, f, g, h, i, j to any of the top vertices a, b, c, d. This is clear from the corresponding picture delet-
ing those 4 edges from G. More formally, in G, the only edges going from {e, f, g, h, i, j} to {a, b, c, d} are
(e, b), (e, c), (g, c), (g, d), and none of these are in H, so H is disconnected.

By contradiction, no such Hamiltonian cycle H can exist, and G does not have a Hamiltonian cycle.
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Problem 5

Part a

Method 1: Partition G into its connected components. Write V = V1 ∪ V2 ∪ ... ∪ Vk for the corresponding
partition of vertices into k (nonempty) connected components. Since this is a partition, Vi∩Vj = ∅ for i 6= j.

Let v ∈ Vi be arbitrary. Since δG(v) ≥ 5 and G is simple, we see v has at least five distinct neighbors
(it has no edges to itself nor multiple edges to the same vertex). These neighbors have a path to v and thus
are also in the same connected component Vi. Thus, |Vi| ≥ 6 (it contains v and its 5 or more neighbors).

This holds for any i, so that |Vi| ≥ 6 for all i = 1, ..., k. Meanwhile,

10 = |V | = |V1|+ |V2|+ ...+ |Vk| =
k∑

i=1

|Vi| ≥
k∑

i=1

6 = 6k

So we see
6k ≤ 10

and so
k ≤ 10/6 < 2

So there are strictly fewer than 2 connected components, so there must only be one. Thus G is connected.

(In less formal terms, we observed there are 10 vertices total and at least 6 vertices in each connected
component, so that there cannot be two or more connected components, as this would require at least 12
distinct vertices.)

Method 2: We show any two vertices in G have a path between them. Let v, w ∈ V be arbitrary with
v 6= w.

If (v, w) ∈ E, then v and w have a path of length 1.

Suppose (v, w) 6∈ E. Then v and w do not have edges to each other or themselves. Since δG(v) ≥ 5
and δG(w) ≥ 5 and we cannot have multiedges, v is connected to at least 5 of the remaining 8 vertices in
V \ {v, w} (as it cannot connect to itself or w by assumption). Similarly, w is connected to at least 5 of the
remaining 8 vertices in V \ {v, w}. By pigeonhole principle, there exists some x ∈ V \ {v, w} connected to
both v and w. Then v − x− w is a path of length 2 between v and w.

In both cases, there is a path from v to w. Since v 6= w ∈ V were arbitrary, we conclude G has a path
between any two distinct vertices. We conclude G is connected.

Remark: This proof is a bit stronger than method 1, since it not only shows G is connected, but also
that the maximum distance between any two vertices is two!

Part b

Through the discussion of method 1 of the previous problem, one might observe that such a graph must
have at least 5 vertices in each connected component. So there can still be two connected components of size
5 each. All vertices having degree 4 then enforces that every edge among these groups of 5 must be there.
Hence, the only possibility is two disjoint copies of K5!
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