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Problem 1
Determine if the following are true or false.

Part a

False. Kg1,2019 has vertices of odd degree 61 and so cannot have an Euler cycle.

Part b

False. The sum of the degrees of all vertices is always even! This is because ) . 0(v) = 2|E| is even. So
we cannot have 9 vertices each of degree 3, as the sum of degrees would then be 27, which is odd.

Part ¢

False. Vertices 2 and 4 have no edges to any of vertices 1,3, 5.

Part d

True. Color the vertices with two colors and this becomes clear.

Part e
True. Let a map to 5, b map to 1, ¢ map to 3, d to 6, e to 2, and f to 4.

Problem 2

Part a

With the ansatz a,, = r", we see
Qp = 4an—1 + 5an—2

gives

P = 4p" Tt 4 ppn 2
and hence

r?=4r+5
Solving for r, we see
r?—4dr—5=0
(r=5)(r+1)=0

so r =5 or r = —1. Thus the general solution is

ap =¢1-5" +co- (—=1)"



Part b
With our initial conditions we see
5=a0:01-50—|—02-(—1)0 =c1+c2

7:a1:Cl'5l+62‘(71)1:501702

Adding these equations we see
12 = 601

6122
02:5—01:3
SO

an =2-5"+3-(=1)"

Part ¢

We have
by = bi—lbi—z

Taking log base two of both sides, we see
log, (by) = 4logy(bn—1) + 5logy(bn—2)

Letting a,, = log,(by,), we see
anp = 40,1+ day_o

which by part a gives us the general solution
ap=c1-5" +co- (=)

Since a, = logy(b,), and by = 1,b; = 16, the initial conditions translate to ay = logy(1) = 0 and
a; = logy(16) = 4.

Plugging these into our general solution we see
O0=ag=c1+co

4=a1 =5c —cy

Adding these equations gives
4 = 661

soc; =4/6=2/3,and ¢o = —c; = —2/3.

So we get the solution

Translating to a solution for b,,, we get

b, = 20n = 2(3:5"=3-(-1)")



Part d

To solve
cp =4cp_1 + 5cp_o + 16

we first compute the homogeneous solution, i.e. the general solution to

H __ H H
Cn = 4Cn—1 + 5cn—2

By part a, the general solution to this is
Cg = dl - 5" +d2 . (—1)"

Next, we compute a particular solution. Since the extra forcing term is constant, and » = 1 is not a solution
to the characteristic polynomial in part a, we may find a particular solution of the form ¢,, = C, where C'is
just a constant. Plugging this into our recurrence relation, we see

C=4C +5C + 16

so —8C = 16, so C = —2. Thus, a particular solution is ¢, = —2 for all n.

Finally, our general solution to this recurrence relation is the sum of the general homogenous and particular
solution, which gives

Cn :d1-5n+d2~(—1)n—2
Finally we are ready for our initial conditions. Since ¢y = 0 and ¢; = 2, we see
O=cy=dy +dy —2

2101:5d17d272

Adding these equations we see
2=06d; —4

sod; =1, and do =2 — d; = 1. Hence,

Cn=5"+ (—1)" -2



Problem 3

See the attached image for the correct steps.

Name:

3. [20 pts] Use Dijkstra’s algorithm to find the length of the shortest path (i.e. the path for which
the sum of the labels is as small as possible) between a and z in the weighted graph below.
You do not need to find the shortest path, finding it’s length will be sufficient.
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Show each step of Dijkstra’s algorithm. A correct final answer with no work shown will not be
sufficient for full credit. Use the blank graphs below for your answer. If you make a mistake,
clearly cross it out and continue using the next blank graph. There are additional blank

graphs on the back of this page.
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Check this box if you used any
graphs from the back of the page:




Problem 4

Part a

We have a Hamiltonian cyclea —b—c—d—h—-l—-k—g—f—j—i—e—a.

Part b

Suppose this graph G = (V| F) had a Hamiltonian cycle H = (V, E’) with E’ C E. Recall that since H is a
hamiltonian cycle, H must be connected, have |E’| = |V| and 65 (v) = 2 for all v € V. We will make use of
the last property.

First, since dy(h) = 2 = dg(h), we must have both (h,7) € E’ and (h,e) € E’. (In words, since h has
degree precisely two, both edges incident to it must be present in any Hamiltonian cycle).

Similarly, since 0y (j) = 2 = d0¢(j), we must have (j,7) € E' and (j,g) € E'.
Next, since (i,h) € E' and (4,j) € E’, and 0g (i) = 2, we must have (i,e), (7, f), (i,9) € E'. (In words,

since 7 already has two incident edges in the Hamiltonian cycle, the remaining edges adjacent to it in G must
not be in the Hamiltonian cycle).

Next, since 0 (f) = 2, 0c(f) = 3, and (f,7) ¢ E’ by the above, we must have (f,e) € E' and (g,¢e) € FE'.
(H must contain precisely two of the three incident edges to f, and we already ruled one edge out).

Next, since dp(e) = 2 and (e, h) € E' and (e, f) € E', we must have (e, i) € E’, (e,c) € E’, and (e, b) &€ E'.
Similarly, 6i(g) = 2 and (g, j), (9, f) € E', so that (g,i),(g,¢), (9, d) & E'.

Now we are ready to contradict! By assumption, H is a hamiltonian cycle and therefore connected. However,
H is a subgraph of G with (e,b), (e, c),(g,¢),(g,d) € E’. Then there is no path from any of the bottom
vertices e, f,g,h,i,j to any of the top vertices a, b, c,d. This is clear from the corresponding picture delet-
ing those 4 edges from G. More formally, in G, the only edges going from {e, f, g, h,i,5} to {a,b,c,d} are
(e,b), (e, ), (g,c),(g,d), and none of these are in H, so H is disconnected.

By contradiction, no such Hamiltonian cycle H can exist, and G does not have a Hamiltonian cycle.



Problem 5

Part a

Method 1: Partition G into its connected components. Write V = V; U Vo U ... U V} for the corresponding
partition of vertices into k (nonempty) connected components. Since this is a partition, V; NV, = 0 for i # j.

Let v € V; be arbitrary. Since dg(v) > 5 and G is simple, we see v has at least five distinct neighbors
(it has no edges to itself nor multiple edges to the same vertex). These neighbors have a path to v and thus
are also in the same connected component V;. Thus, |V;| > 6 (it contains v and its 5 or more neighbors).

This holds for any 4, so that |V;| > 6 for all i = 1, ..., k. Meanwhile,
k k
10 = |V| = [VA| + [Va| + oo+ Vil = > [Vi| =) 6 =6k
i=1 i=1
So we see
6k < 10

and so
kE<10/6 <2

So there are strictly fewer than 2 connected components, so there must only be one. Thus G is connected.

(In less formal terms, we observed there are 10 vertices total and at least 6 vertices in each connected
component, so that there cannot be two or more connected components, as this would require at least 12
distinct vertices.)

Method 2: We show any two vertices in G have a path between them. Let v,w € V be arbitrary with
v # w.

If (v,w) € E, then v and w have a path of length 1.

Suppose (v,w) ¢ E. Then v and w do not have edges to each other or themselves. Since dg(v) > 5
and dg(w) > 5 and we cannot have multiedges, v is connected to at least 5 of the remaining 8 vertices in
V\ {v,w} (as it cannot connect to itself or w by assumption). Similarly, w is connected to at least 5 of the
remaining 8 vertices in V' \ {v,w}. By pigeonhole principle, there exists some x € V' \ {v,w} connected to
both v and w. Then v — x — w is a path of length 2 between v and w.

In both cases, there is a path from v to w. Since v # w € V were arbitrary, we conclude G has a path
between any two distinct vertices. We conclude G is connected.

Remark: This proof is a bit stronger than method 1, since it not only shows G is connected, but also
that the maximum distance between any two vertices is two!

Part b

Through the discussion of method 1 of the previous problem, one might observe that such a graph must
have at least 5 vertices in each connected component. So there can still be two connected components of size
5 each. All vertices having degree 4 then enforces that every edge among these groups of 5 must be there.
Hence, the only possibility is two disjoint copies of K5!
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